
Metrics Documentation
Release @project.version@

Coda Hale

Jun 06, 2021

CONTENTS

1 Getting Started 3

2 User Manual 11

3 About Metrics 31

i

ii

Metrics Documentation, Release @project.version@

Metrics provides a powerful toolkit of ways to measure the behavior of critical components in your production envi-
ronment.

With modules for common libraries like Jetty, Logback, Log4j, Apache HttpClient, Ehcache, JDBI, Jersey and
reporting backends like Ganglia and Graphite, Metrics provides you with full-stack visibility.

CONTENTS 1

Metrics Documentation, Release @project.version@

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

Getting Started will guide you through the process of adding Metrics to an existing application. We’ll
go through the various measuring instruments that Metrics provides, how to use them, and when
they’ll come in handy.

1.1 Setting Up Maven

You need the metrics-core library as a dependency:

<dependencies>
<dependency>

<groupId>io.dropwizard.metrics</groupId>
<artifactId>metrics-core</artifactId>
<version>${metrics.version}</version>

</dependency>
</dependencies>

Note: Make sure you have a metrics.version property declared in your POM with the current version, which is
@project.version@.

Now it’s time to add some metrics to your application!

1.2 Meters

A meter measures the rate of events over time (e.g., “requests per second”). In addition to the mean rate, meters also
track 1-, 5-, and 15-minute moving averages.

private final MetricRegistry metrics = new MetricRegistry();
private final Meter requests = metrics.meter("requests");

public void handleRequest(Request request, Response response) {
requests.mark();
// etc

}

This meter will measure the rate of requests in requests per second.

3

Metrics Documentation, Release @project.version@

1.3 Console Reporter

A Console Reporter is exactly what it sounds like - report to the console. This reporter will print every second.

ConsoleReporter reporter = ConsoleReporter.forRegistry(metrics)
.convertRatesTo(TimeUnit.SECONDS)
.convertDurationsTo(TimeUnit.MILLISECONDS)
.build();

reporter.start(1, TimeUnit.SECONDS);

1.4 Complete getting started

So the complete Getting Started is

package sample;
import com.codahale.metrics.*;
import java.util.concurrent.TimeUnit;

public class GetStarted {
static final MetricRegistry metrics = new MetricRegistry();
public static void main(String args[]) {
startReport();
Meter requests = metrics.meter("requests");
requests.mark();
wait5Seconds();

}

static void startReport() {
ConsoleReporter reporter = ConsoleReporter.forRegistry(metrics)

.convertRatesTo(TimeUnit.SECONDS)

.convertDurationsTo(TimeUnit.MILLISECONDS)

.build();
reporter.start(1, TimeUnit.SECONDS);

}

static void wait5Seconds() {
try {

Thread.sleep(5*1000);
}
catch(InterruptedException e) {}

}
}

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
→˓XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
→˓apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>somegroup</groupId>
(continues on next page)

4 Chapter 1. Getting Started

Metrics Documentation, Release @project.version@

(continued from previous page)

<artifactId>sample</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>Example project for Metrics</name>

<dependencies>
<dependency>
<groupId>io.dropwizard.metrics</groupId>
<artifactId>metrics-core</artifactId>
<version>${metrics.version}</version>

</dependency>
</dependencies>

</project>

Note: Make sure you have a metrics.version property declared in your POM with the current version, which is
@project.version@.

To run

mvn package exec:java -Dexec.mainClass=sample.First

1.5 The Registry

The centerpiece of Metrics is the MetricRegistry class, which is the container for all your application’s metrics. Go
ahead and create a new one:

final MetricRegistry metrics = new MetricRegistry();

You’ll probably want to integrate this into your application’s lifecycle (maybe using your dependency injection frame-
work), but static field is fine.

1.6 Gauges

A gauge is an instantaneous measurement of a value. For example, we may want to measure the number of pending
jobs in a queue:

public class QueueManager {
private final Queue queue;

public QueueManager(MetricRegistry metrics, String name) {
this.queue = new Queue();
metrics.register(MetricRegistry.name(QueueManager.class, name, "size"),

new Gauge<Integer>() {
@Override
public Integer getValue() {

return queue.size();
}

});
(continues on next page)

1.5. The Registry 5

Metrics Documentation, Release @project.version@

(continued from previous page)

}
}

When this gauge is measured, it will return the number of jobs in the queue.

Every metric in a registry has a unique name, which is just a dotted-name string like "things.count" or "com.
example.Thing.latency". MetricRegistry has a static helper method for constructing these names:

MetricRegistry.name(QueueManager.class, "jobs", "size")

This will return a string with something like "com.example.QueueManager.jobs.size".

For most queue and queue-like structures, you won’t want to simply return queue.size(). Most of java.util and
java.util.concurrent have implementations of #size() which are O(n), which means your gauge will be slow
(potentially while holding a lock).

1.7 Counters

A counter is just a gauge for an AtomicLong instance. You can increment or decrement its value. For example, we
may want a more efficient way of measuring the pending job in a queue:

private final Counter pendingJobs = metrics.counter(name(QueueManager.class, "pending-
→˓jobs"));

public void addJob(Job job) {
pendingJobs.inc();
queue.offer(job);

}

public Job takeJob() {
pendingJobs.dec();
return queue.take();

}

Every time this counter is measured, it will return the number of jobs in the queue.

As you can see, the API for counters is slightly different: #counter(String) instead of #register(String,
Metric). While you can use register and create your own Counter instance, #counter(String) does all the
work for you, and allows you to reuse metrics with the same name.

Also, we’ve statically imported MetricRegistry’s name method in this scope to reduce clutter.

1.8 Histograms

A histogram measures the statistical distribution of values in a stream of data. In addition to minimum, maximum,
mean, etc., it also measures median, 75th, 90th, 95th, 98th, 99th, and 99.9th percentiles.

private final Histogram responseSizes = metrics.histogram(name(RequestHandler.class,
→˓"response-sizes"));

public void handleRequest(Request request, Response response) {
(continues on next page)

6 Chapter 1. Getting Started

Metrics Documentation, Release @project.version@

(continued from previous page)

// etc
responseSizes.update(response.getContent().length);

}

This histogram will measure the size of responses in bytes.

1.9 Timers

A timer measures both the rate that a particular piece of code is called and the distribution of its duration.

private final Timer responses = metrics.timer(name(RequestHandler.class, "responses"));

public String handleRequest(Request request, Response response) {
final Timer.Context context = responses.time();
try {

// etc;
return "OK";

} finally {
context.stop();

}
}

This timer will measure the amount of time it takes to process each request in nanoseconds and provide a rate of requests
in requests per second.

1.10 Health Checks

Metrics also has the ability to centralize your service’s health checks with the metrics-healthchecks module.

First, create a new HealthCheckRegistry instance:

final HealthCheckRegistry healthChecks = new HealthCheckRegistry();

Second, implement a HealthCheck subclass:

public class DatabaseHealthCheck extends HealthCheck {
private final Database database;

public DatabaseHealthCheck(Database database) {
this.database = database;

}

@Override
public HealthCheck.Result check() throws Exception {

if (database.isConnected()) {
return HealthCheck.Result.healthy();

} else {
return HealthCheck.Result.unhealthy("Cannot connect to " + database.

→˓getUrl());
}

(continues on next page)

1.9. Timers 7

Metrics Documentation, Release @project.version@

(continued from previous page)

}
}

Then register an instance of it with Metrics:

healthChecks.register("postgres", new DatabaseHealthCheck(database));

To run all of the registered health checks:

final Map<String, HealthCheck.Result> results = healthChecks.runHealthChecks();
for (Entry<String, HealthCheck.Result> entry : results.entrySet()) {

if (entry.getValue().isHealthy()) {
System.out.println(entry.getKey() + " is healthy");

} else {
System.err.println(entry.getKey() + " is UNHEALTHY: " + entry.getValue().

→˓getMessage());
final Throwable e = entry.getValue().getError();
if (e != null) {

e.printStackTrace();
}

}
}

Metrics comes with a pre-built health check: ThreadDeadlockHealthCheck, which uses Java’s built-in thread dead-
lock detection to determine if any threads are deadlocked.

1.11 Reporting Via JMX

To report metrics via JMX:

final JmxReporter reporter = JmxReporter.forRegistry(registry).build();
reporter.start();

Once the reporter is started, all of the metrics in the registry will become visible via JConsole or VisualVM (if you
install the MBeans plugin):

8 Chapter 1. Getting Started

Metrics Documentation, Release @project.version@

Tip: If you double-click any of the metric properties, VisualVM will start graphing the data for that property. Sweet,
eh?

1.12 Reporting Via HTTP

Metrics also ships with a servlet (AdminServlet) which will serve a JSON representation of all registered metrics. It
will also run health checks, print out a thread dump, and provide a simple “ping” response for load-balancers. (It also
has single servlets–MetricsServlet, HealthCheckServlet, ThreadDumpServlet, and PingServlet–which do
these individual tasks.)

To use this servlet, include the metrics-servlets module as a dependency:

<dependency>
<groupId>io.dropwizard.metrics</groupId>
<artifactId>metrics-servlets</artifactId>
<version>${metrics.version}</version>

</dependency>

Note: Make sure you have a metrics.version property declared in your POM with the current version, which is
@project.version@.

From there on, you can map the servlet to whatever path you see fit.

1.12. Reporting Via HTTP 9

Metrics Documentation, Release @project.version@

1.13 Other Reporting

In addition to JMX and HTTP, Metrics also has reporters for the following outputs:

• STDOUT, using ConsoleReporter from metrics-core

• CSV files, using CsvReporter from metrics-core

• SLF4J loggers, using Slf4jReporter from metrics-core

• Ganglia, using GangliaReporter from metrics-ganglia

• Graphite, using GraphiteReporter from metrics-graphite

10 Chapter 1. Getting Started

CHAPTER

TWO

USER MANUAL

This goal of this document is to provide you with all the information required to effectively use the
Metrics library in your application. If you’re new to Metrics, you should read the Getting Started
guide first.

2.1 Metrics Core

The central library for Metrics is metrics-core, which provides some basic functionality:

• Metric registries.

• The five metric types: Gauges, Counters, Histograms, Meters, and Timers.

• Reporting metrics values via JMX, the console, CSV files, and SLF4J loggers.

2.1.1 Metric Registries

The starting point for Metrics is the MetricRegistry class, which is a collection of all the metrics for your application
(or a subset of your application).

Generally you only need one MetricRegistry instance per application, although you may choose to use more if you
want to organize your metrics in particular reporting groups.

Global named registries can also be shared through the static SharedMetricRegistries class. This allows the same
registry to be used in different sections of code without explicitly passing a MetricRegistry instance around.

Like all Metrics classes, SharedMetricRegistries is fully thread-safe.

2.1.2 Metric Names

Each metric is associated with a MetricRegistry, and has a unique name within that registry. This is a simple dotted
name, like com.example.Queue.size. This flexibility allows you to encode a wide variety of context directly into a
metric’s name. If you have two instances of com.example.Queue, you can give them more specific: com.example.
Queue.requests.size vs. com.example.Queue.responses.size, for example.

MetricRegistry has a set of static helper methods for easily creating names:

MetricRegistry.name(Queue.class, "requests", "size")
MetricRegistry.name(Queue.class, "responses", "size")

These methods will also elide any null values, allowing for easy optional scopes.

11

Metrics Documentation, Release @project.version@

2.1.3 Gauges

A gauge is the simplest metric type. It just returns a value. If, for example, your application has a value which is
maintained by a third-party library, you can easily expose it by registering a Gauge instance which returns that value:

registry.register(name(SessionStore.class, "cache-evictions"), new Gauge<Integer>() {
@Override
public Integer getValue() {

return cache.getEvictionsCount();
}

});

This will create a new gauge named com.example.proj.auth.SessionStore.cache-evictions which will re-
turn the number of evictions from the cache.

JMX Gauges

Given that many third-party libraries often expose metrics only via JMX, Metrics provides the JmxAttributeGauge
class, which takes the object name of a JMX MBean and the name of an attribute and produces a gauge implementation
which returns the value of that attribute:

registry.register(name(SessionStore.class, "cache-evictions"),
new JmxAttributeGauge("net.sf.ehcache:type=Cache,scope=sessions,

→˓name=eviction-count", "Value"));

Ratio Gauges

A ratio gauge is a simple way to create a gauge which is the ratio between two numbers:

public class CacheHitRatio extends RatioGauge {
private final Meter hits;
private final Timer calls;

public CacheHitRatio(Meter hits, Timer calls) {
this.hits = hits;
this.calls = calls;

}

@Override
public Ratio getRatio() {

return Ratio.of(hits.getOneMinuteRate(),
calls.getOneMinuteRate());

}
}

This gauge returns the ratio of cache hits to misses using a meter and a timer.

12 Chapter 2. User Manual

Metrics Documentation, Release @project.version@

Cached Gauges

A cached gauge allows for a more efficient reporting of values which are expensive to calculate. The value is cached
for the period specified in the constructor. The “getValue()” method called by the client only returns the cached value.
The protected “loadValue()” method is only called internally to reload the cache value.

registry.register(name(Cache.class, cache.getName(), "size"),
new CachedGauge<Long>(10, TimeUnit.MINUTES) {

@Override
protected Long loadValue() {

// assume this does something which takes a long time
return cache.getSize();

}
});

Derivative Gauges

A derivative gauge allows you to derive values from other gauges’ values:

public class CacheSizeGauge extends DerivativeGauge<CacheStats, Long> {
public CacheSizeGauge(Gauge<CacheStats> statsGauge) {

super(statsGauge);
}

@Override
protected Long transform(CacheStats stats) {

return stats.getSize();
}

}

2.1.4 Counters

A counter is a simple incrementing and decrementing 64-bit integer:

final Counter evictions = registry.counter(name(SessionStore.class, "cache-evictions"));
evictions.inc();
evictions.inc(3);
evictions.dec();
evictions.dec(2);

All Counter metrics start out at 0.

2.1. Metrics Core 13

Metrics Documentation, Release @project.version@

2.1.5 Histograms

A Histogram measures the distribution of values in a stream of data: e.g., the number of results returned by a search:

final Histogram resultCounts = registry.histogram(name(ProductDAO.class, "result-counts
→˓");
resultCounts.update(results.size());

Histogrammetrics allow you to measure not just easy things like the min, mean, max, and standard deviation of values,
but also quantiles like the median or 95th percentile.

Traditionally, the way the median (or any other quantile) is calculated is to take the entire data set, sort it, and take the
value in the middle (or 1% from the end, for the 99th percentile). This works for small data sets, or batch processing
systems, but not for high-throughput, low-latency services.

The solution for this is to sample the data as it goes through. By maintaining a small, manageable reservoir which is
statistically representative of the data stream as a whole, we can quickly and easily calculate quantiles which are valid
approximations of the actual quantiles. This technique is called reservoir sampling.

Metrics provides a number of different Reservoir implementations, each of which is useful.

Uniform Reservoirs

A histogram with a uniform reservoir produces quantiles which are valid for the entirely of the histogram’s lifetime.
It will return a median value, for example, which is the median of all the values the histogram has ever been updated
with. It does this by using an algorithm called Vitter’s R), which randomly selects values for the reservoir with linearly-
decreasing probability.

Use a uniform histogram when you’re interested in long-term measurements. Don’t use one where you’d want to know
if the distribution of the underlying data stream has changed recently.

Exponentially Decaying Reservoirs

A histogram with an exponentially decaying reservoir produces quantiles which are representative of (roughly) the last
five minutes of data. It does so by using a forward-decaying priority reservoir with an exponential weighting towards
newer data. Unlike the uniform reservoir, an exponentially decaying reservoir represents recent data, allowing you
to know very quickly if the distribution of the data has changed. Timers use histograms with exponentially decaying
reservoirs by default.

Sliding Window Reservoirs

A histogram with a sliding window reservoir produces quantiles which are representative of the past N measurements.

Sliding Time Window Reservoirs

A histogram with a sliding time window reservoir produces quantiles which are strictly representative of the past N
seconds (or other time period).

Warning: While SlidingTimeWindowReservoir is easier to understand than
ExponentiallyDecayingReservoir, it is not bounded in size, so using it to sample a high-frequency
process can require a significant amount of memory. Because it records every measurement, it’s also the slowest
reservoir type.

14 Chapter 2. User Manual

http://en.wikipedia.org/wiki/Quantile
http://www.cs.umd.edu/~samir/498/vitter.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/fwddecay.pdf

Metrics Documentation, Release @project.version@

Hint: Try to use our new optimised version of SlidingTimeWindowReservoir called
SlidingTimeWindowArrayReservoir. It brings much lower memory overhead. Also it’s allocation/free
patterns are different, so GC overhead is 60x-80x lower then SlidingTimeWindowReservoir. Now
SlidingTimeWindowArrayReservoir is comparable with ExponentiallyDecayingReservoir in terms
GC overhead and performance. As for required memory, SlidingTimeWindowArrayReservoir takes ~128 bits per
stored measurement and you can simply calculate required amount of heap.

Example: 10K measurements / sec with reservoir storing time of 1 minute will take 10000 * 60 * 128 / 8 = 9600000
bytes ~ 9 megabytes

2.1.6 Meters

A meter measures the rate at which a set of events occur:

final Meter getRequests = registry.meter(name(WebProxy.class, "get-requests", "requests
→˓"));
getRequests.mark();
getRequests.mark(requests.size());

Meters measure the rate of the events in a few different ways. The mean rate is the average rate of events. It’s generally
useful for trivia, but as it represents the total rate for your application’s entire lifetime (e.g., the total number of requests
handled, divided by the number of seconds the process has been running), it doesn’t offer a sense of recency. Luckily,
meters also record three different exponentially-weighted moving average rates: the 1-, 5-, and 15-minute moving
averages.

Hint: Just like the Unix load averages visible in uptime or top.

2.1.7 Timers

A timer is basically a histogram of the duration of a type of event and a meter of the rate of its occurrence.

final Timer timer = registry.timer(name(WebProxy.class, "get-requests"));

final Timer.Context context = timer.time();
try {

// handle request
} finally {

context.stop();
}

Note: Elapsed times for it events are measured internally in nanoseconds, using Java’s high-precision System.
nanoTime() method. Its precision and accuracy vary depending on operating system and hardware.

2.1. Metrics Core 15

Metrics Documentation, Release @project.version@

2.1.8 Metric Sets

Metrics can also be grouped together into reusable metric sets using the MetricSet interface. This allows library
authors to provide a single entry point for the instrumentation of a wide variety of functionality.

2.1.9 Reporters

Reporters are the way that your application exports all the measurements being made by its metrics. metrics-core
comes with four ways of exporting your metrics: JMX, console, SLF4J, and CSV .

JMX

With JmxReporter, you can expose your metrics as JMX MBeans. To explore this you can use VisualVM (which
ships with most JDKs as jvisualvm) with the VisualVM-MBeans plugins installed or JConsole (which ships with
most JDKs as jconsole):

Tip: If you double-click any of the metric properties, VisualVM will start graphing the data for that property. Sweet,
eh?

Warning: We don’t recommend that you try to gather metrics from your production environment. JMX’s RPC
API is fragile and bonkers. For development purposes and browsing, though, it can be very useful.

To report metrics via JMX:

final JmxReporter reporter = JmxReporter.forRegistry(registry).build();
reporter.start();

16 Chapter 2. User Manual

http://visualvm.java.net/

Metrics Documentation, Release @project.version@

Console

For simple benchmarks, Metrics comes with ConsoleReporter, which periodically reports all registered metrics to
the console:

final ConsoleReporter reporter = ConsoleReporter.forRegistry(registry)
.convertRatesTo(TimeUnit.SECONDS)
.convertDurationsTo(TimeUnit.

→˓MILLISECONDS)
.build();

reporter.start(1, TimeUnit.MINUTES);

CSV

For more complex benchmarks, Metrics comes with CsvReporter, which periodically appends to a set of .csv files
in a given directory:

final CsvReporter reporter = CsvReporter.forRegistry(registry)
.formatFor(Locale.US)
.convertRatesTo(TimeUnit.SECONDS)
.convertDurationsTo(TimeUnit.MILLISECONDS)
.build(new File("~/projects/data/"));

reporter.start(1, TimeUnit.SECONDS);

For each metric registered, a .csv file will be created, and every second its state will be written to it as a new row.

SLF4J

It’s also possible to log metrics to an SLF4J logger:

final Slf4jReporter reporter = Slf4jReporter.forRegistry(registry)
.outputTo(LoggerFactory.getLogger("com.

→˓example.metrics"))
.convertRatesTo(TimeUnit.SECONDS)
.convertDurationsTo(TimeUnit.MILLISECONDS)
.build();

reporter.start(1, TimeUnit.MINUTES);

Other Reporters

Metrics has other reporter implementations, too:

• MetricsServlet is a servlet which not only exposes your metrics as a JSON object, but it also runs your health
checks, performs thread dumps, and exposes valuable JVM-level and OS-level information.

• GangliaReporter allows you to constantly stream metrics data to your Ganglia servers.

• GraphiteReporter allows you to constantly stream metrics data to your Graphite servers.

2.1. Metrics Core 17

Metrics Documentation, Release @project.version@

2.2 Health Checks

Metrics also provides you with a consistent, unified way of performing application health checks. A health check
is basically a small self-test which your application performs to verify that a specific component or responsibility is
performing correctly.

To create a health check, extend the HealthCheck class:

public class DatabaseHealthCheck extends HealthCheck {
private final Database database;

public DatabaseHealthCheck(Database database) {
this.database = database;

}

@Override
protected Result check() throws Exception {

if (database.ping()) {
return Result.healthy();

}
return Result.unhealthy("Can't ping database");

}
}

In this example, we’ve created a health check for a Database class on which our application depends. Our fictitious
Database class has a #ping() method, which executes a safe test query (e.g., SELECT 1). #ping() returns true if
the query returns the expected result, returns false if it returns something else, and throws an exception if things have
gone seriously wrong.

Our DatabaseHealthCheck, then, takes a Database instance and in its #check() method, attempts to ping the
database. If it can, it returns a healthy result. If it can’t, it returns an unhealthy result.

Note: Exceptions thrown inside a health check’s #check()method are automatically caught and turned into unhealthy
results with the full stack trace.

To register a health check, either use a HealthCheckRegistry instance:

registry.register("database", new DatabaseHealthCheck(database));

You can also run the set of registered health checks:

for (Entry<String, Result> entry : registry.runHealthChecks().entrySet()) {
if (entry.getValue().isHealthy()) {

System.out.println(entry.getKey() + ": OK");
} else {

System.out.println(entry.getKey() + ": FAIL");
}

}

18 Chapter 2. User Manual

Metrics Documentation, Release @project.version@

2.3 Instrumenting Ehcache

The metrics-ehcache module provides InstrumentedEhcache, a decorator for Ehcache caches:

final Cache c = new Cache(new CacheConfiguration("test", 100));
MANAGER.addCache(c);
this.cache = InstrumentedEhcache.instrument(registry, c);

Instrumenting an Ehcache instance creates gauges for all of the Ehcache-provided statistics:

hits The number of times a requested item was found in the cache.
in-memory-hitsNumber of times a requested item was found in the memory store.
off-heap-hitsNumber of times a requested item was found in the off-heap store.
on-disk-hits Number of times a requested item was found in the disk store.
misses Number of times a requested item was not found in the cache.
in-memory-missesNumber of times a requested item was not found in the memory store.
off-heap-missesNumber of times a requested item was not found in the off-heap store.
on-disk-missesNumber of times a requested item was not found in the disk store.
objects Number of elements stored in the cache.
in-memory-objectsNumber of objects in the memory store.
off-heap-objectsNumber of objects in the off-heap store.
on-disk-objectsNumber of objects in the disk store.
mean-get-timeThe average get time. Because ehcache supports JDK1.4.2, each get time uses System.

currentTimeMillis(), rather than nanoseconds. The accuracy is thus limited.
mean-search-timeThe average execution time (in milliseconds) within the last sample period.
eviction-countThe number of cache evictions, since the cache was created, or statistics were cleared.
searches-per-secondThe number of search executions that have completed in the last second.
accuracy A human readable description of the accuracy setting. One of “None”, “Best Effort” or “Guaran-

teed”.

It also adds full timers for the cache’s get and put methods.

The metrics are all scoped to the cache’s class and name, so a Cache instance named users would have metric names
like net.sf.ehcache.Cache.users.get, etc.

2.4 Reporting to Ganglia

The metrics-ganglia module provides GangliaReporter, which allows your application to constantly stream met-
ric values to a Ganglia server:

final GMetric ganglia = new GMetric("ganglia.example.com", 8649, UDPAddressingMode.
→˓MULTICAST, 1);
final GangliaReporter reporter = GangliaReporter.forRegistry(registry)

.convertRatesTo(TimeUnit.SECONDS)

.convertDurationsTo(TimeUnit.
→˓MILLISECONDS)

.build(ganglia);
reporter.start(1, TimeUnit.MINUTES);

2.3. Instrumenting Ehcache 19

http://ganglia.sourceforge.net/

Metrics Documentation, Release @project.version@

2.5 Reporting to Graphite

The metrics-graphite module provides GraphiteReporter, which allows your application to constantly stream
metric values to a Graphite server:

final Graphite graphite = new Graphite(new InetSocketAddress("graphite.example.com",␣
→˓2003));
final GraphiteReporter reporter = GraphiteReporter.forRegistry(registry)

.prefixedWith("web1.example.com")

.convertRatesTo(TimeUnit.SECONDS)

.convertDurationsTo(TimeUnit.
→˓MILLISECONDS)

.filter(MetricFilter.ALL)

.build(graphite);
reporter.start(1, TimeUnit.MINUTES);

If you prefer to write metrics in batches using pickle, you can use the PickledGraphite:

final PickledGraphite pickledGraphite = new PickledGraphite(new InetSocketAddress(
→˓"graphite.example.com", 2004));
final GraphiteReporter reporter = GraphiteReporter.forRegistry(registry)

.prefixedWith("web1.example.com")

.convertRatesTo(TimeUnit.SECONDS)

.convertDurationsTo(TimeUnit.
→˓MILLISECONDS)

.filter(MetricFilter.ALL)

.build(pickledGraphite);
reporter.start(1, TimeUnit.MINUTES);

2.6 Instrumenting Apache HttpClient

The metrics-httpclient module provides InstrumentedHttpClientConnManager and
InstrumentedHttpClients, two instrumented versions of Apache HttpClient 4.x classes.

InstrumentedHttpClientConnManager is a thread-safe HttpClientConnectionManager implementation which
measures the number of open connections in the pool and the rate at which new connections are opened.

InstrumentedHttpClients follows the HttpClients builder pattern and adds per-HTTP method timers for HTTP
requests.

2.6.1 Metric naming strategies

The default per-method metric naming and scoping strategy can be overridden by passing an implementation of
HttpClientMetricNameStrategy to the InstrumentedHttpClients.createDefault method.

A number of pre-rolled strategies are available, e.g.:

HttpClient client = InstrumentedHttpClients.createDefault(registry,␣
→˓HttpClientMetricNameStrategies.HOST_AND_METHOD);

20 Chapter 2. User Manual

http://graphite.wikidot.com/
http://hc.apache.org/httpcomponents-client-ga/

Metrics Documentation, Release @project.version@

2.7 Instrumenting JDBI

The metrics-jdbi module provides a TimingCollector implementation for JDBI, an SQL convenience library.

To use it, just add a InstrumentedTimingCollector instance to your DBI:

final DBI dbi = new DBI(dataSource);
dbi.setTimingCollector(new InstrumentedTimingCollector(registry));

InstrumentedTimingCollector keeps per-SQL-object timing data, as well as general raw SQL timing data. The
metric names for each query are constructed by an StatementNameStrategy instance, of which there are many
implementations. By default, StatementNameStrategy uses SmartNameStrategy, which attempts to effectively
handle both queries from bound objects and raw SQL.

2.8 Instrumenting Jersey 1.x

The metrics-jersey module provides InstrumentedResourceMethodDispatchAdapter, which allows you to
instrument methods on your Jersey 1.x resource classes:

An instance of InstrumentedResourceMethodDispatchAdapter must be registered with your Jersey application’s
ResourceConfig as a singleton provider for this to work.

public class ExampleApplication {
private final DefaultResourceConfig config = new DefaultResourceConfig();

public void init() {
config.getSingletons().add(new␣

→˓InstrumentedResourceMethodDispatchAdapter(registry));
config.getClasses().add(ExampleResource.class);

}
}

@Path("/example")
@Produces(MediaType.TEXT_PLAIN)
public class ExampleResource {

@GET
@Timed
public String show() {

return "yay";
}

}

The show method in the above example will have a timer attached to it, measuring the time spent in that method.

Use of the @Metered and @ExceptionMetered annotations is also supported.

2.7. Instrumenting JDBI 21

http://jdbi.org/
https://jersey.java.net/documentation/1.18/index.html

Metrics Documentation, Release @project.version@

2.9 Instrumenting Jersey 2.x

Jersey 2.x changed the API for how resource method monitoring works, so a new module metrics-jersey2 provides
InstrumentedResourceMethodApplicationListener, which allows you to instrument methods on your Jersey
2.x resource classes:

The metrics-jersey2 module provides InstrumentedResourceMethodApplicationListener, which allows
you to instrument methods on your Jersey 2.x resource classes:

An instance of InstrumentedResourceMethodApplicationListener must be registered with your Jersey appli-
cation’s ResourceConfig as a singleton provider for this to work.

public class ExampleApplication extends ResourceConfig {
.
.
.
register(new InstrumentedResourceMethodApplicationListener (new MetricRegistry()));
config = config.register(ExampleResource.class);
.
.
.

}

@Path("/example")
@Produces(MediaType.TEXT_PLAIN)
public class ExampleResource {

@GET
@Timed
public String show() {

return "yay";
}

}

The show method in the above example will have a timer attached to it, measuring the time spent in that method.

Use of the @Metered and @ExceptionMetered annotations is also supported.

2.10 Instrumenting Jetty

The metrics-jetty8 (Jetty 8.0), metrics-jetty9-legacy (Jetty 9.0), and metrics-jetty9 (Jetty 9.1 and higher)
modules provides a set of instrumented equivalents of Jetty classes: InstrumentedBlockingChannelConnector,
InstrumentedHandler, InstrumentedQueuedThreadPool, InstrumentedSelectChannelConnector, and
InstrumentedSocketConnector.

The Connector implementations are simple, instrumented subclasses of the Jetty connector types which measure
connection duration, the rate of accepted connections, connections, disconnections, and the total number of active
connections.

InstrumentedQueuedThreadPool is a QueuedThreadPool subclass which measures the ratio of idle threads to
working threads as well as the absolute number of threads (idle and otherwise).

InstrumentedHandler is a Handler decorator which measures a wide range of HTTP behavior: dispatch times,
requests, resumes, suspends, expires, the number of active, suspected, and dispatched requests, as well as meters of
responses with 1xx, 2xx, 3xx, 4xx, and 5xx status codes. It even has gauges for the ratios of 4xx and 5xx response
rates to overall response rates. Finally, it includes meters for requests by the HTTP method: GET, POST, etc.

22 Chapter 2. User Manual

https://jersey.java.net/documentation/latest/index.html
https://jersey.java.net/documentation/latest/index.html
https://jersey.java.net/documentation/latest/index.html
http://www.eclipse.org/jetty/

Metrics Documentation, Release @project.version@

2.11 Instrumenting Log4j

The metrics-log4j and metrics-log4j2 modules provide InstrumentedAppender, a Log4j Appender imple-
mentation (for log4j 1.x and log4j 2.x correspondingly) which records the rate of logged events by their logging level.

You can add it to the root logger programmatically.

For log4j 1.x:

InstrumentedAppender appender = new InstrumentedAppender(registry);
appender.activateOptions();
LogManager.getRootLogger().addAppender(appender);

For log4j 2.x:

Filter filter = null; // That's fine if we don't use filters; https://logging.
→˓apache.org/log4j/2.x/manual/filters.html
PatternLayout layout = null; // The layout isn't used in InstrumentedAppender

InstrumentedAppender appender = new InstrumentedAppender(metrics, filter, layout, false);
appender.start();

LoggerContext context = (LoggerContext) LogManager.getContext(false);
Configuration config = context.getConfiguration();
config.getLoggerConfig(LogManager.ROOT_LOGGER_NAME).addAppender(appender, level, filter);
context.updateLoggers(config);

You can also use standard log4j2 configuration, via plugin support:

<?xml version="1.0" encoding="UTF-8"?>
<Configuration status="INFO" name="log4j2-config" packages="com.codahale.metrics.log4j2">
<Appenders>

<MetricsAppender name="metrics" registryName="shared-metrics-registry"/>
</Appenders>
<Loggers>

<Root level="INFO">
<AppenderRef ref="metrics" />

</Root>
</Loggers>
</Configuration>

2.12 Instrumenting Logback

The metrics-logback module provides InstrumentedAppender, a Logback Appender implementation which
records the rate of logged events by their logging level.

You add it to the root logger programmatically:

final LoggerContext factory = (LoggerContext) LoggerFactory.getILoggerFactory();
final Logger root = factory.getLogger(Logger.ROOT_LOGGER_NAME);

final InstrumentedAppender metrics = new InstrumentedAppender(registry);
metrics.setContext(root.getLoggerContext());

(continues on next page)

2.11. Instrumenting Log4j 23

Metrics Documentation, Release @project.version@

(continued from previous page)

metrics.start();
root.addAppender(metrics);

2.13 JVM Instrumentation

The metrics-jvm module contains a number of reusable gauges and metric sets which allow you to easily instrument
JVM internals.

Supported metrics include:

• Run count and elapsed times for all supported garbage collectors

• Memory usage for all memory pools, including off-heap memory

• Breakdown of thread states, including deadlocks

• File descriptor usage

• Buffer pool sizes and utilization (Java 7 only)

2.14 JSON Support

Metrics comes with metrics-json, which features two reusable modules for Jackson.

This allows for the serialization of all metric types and health checks to a standard, easily-parsable JSON format.

2.15 Metrics Servlets

The metrics-servlets module provides a handful of useful servlets:

2.15.1 HealthCheckServlet

HealthCheckServlet responds to GET requests by running all the [health checks](#health-checks) and returning 501
Not Implemented if no health checks are registered, 200 OK if all pass, or 500 Internal Service Error if one
or more fail. The results are returned as a human-readable text/plain entity.

HealthCheckServlet requires that the servlet context has a HealthCheckRegistry named com.codahale.
metrics.servlets.HealthCheckServlet.registry. You can subclass MetricsServletContextListener,
which will add a specific HealthCheckRegistry to the servlet context.

24 Chapter 2. User Manual

http://wiki.fasterxml.com/JacksonHome

Metrics Documentation, Release @project.version@

2.15.2 ThreadDumpServlet

ThreadDumpServlet responds to GET requests with a text/plain representation of all the live threads in the JVM,
their states, their stack traces, and the state of any locks they may be waiting for.

2.15.3 MetricsServlet

MetricsServlet exposes the state of the metrics in a particular registry as a JSON object.

MetricsServlet requires that the servlet context has a MetricRegistry named com.codahale.metrics.
servlets.MetricsServlet.registry. You can subclass MetricsServletContextListener, which will add
a specific MetricRegistry to the servlet context.

MetricsServlet also takes an initialization parameter, show-jvm-metrics, which if "false" will disable the out-
putting of JVM-level information in the JSON object.

2.15.4 PingServlet

PingServlet responds to GET requests with a text/plain/200 OK response of pong. This is useful for determining
liveness for load balancers, etc.

2.15.5 AdminServlet

AdminServlet aggregates HealthCheckServlet, ThreadDumpServlet, MetricsServlet, and PingServlet
into a single, easy-to-use servlet which provides a set of URIs:

• /: an HTML admin menu with links to the following:

– /healthcheck: HealthCheckServlet

– /metrics: MetricsServlet

– /ping: PingServlet

– /threads: ThreadDumpServlet

You will need to add your MetricRegistry and HealthCheckRegistry instances to the servlet context as at-
tributes named com.codahale.metrics.servlets.MetricsServlet.registry and com.codahale.metrics.
servlets.HealthCheckServlet.registry, respectively. You can do this using the Servlet API by extending
MetricsServlet.ContextListener for MetricRegistry:

public class MyMetricsServletContextListener extends MetricsServlet.ContextListener {

public static final MetricRegistry METRIC_REGISTRY = new MetricRegistry();

@Override
protected MetricRegistry getMetricRegistry() {

return METRIC_REGISTRY;
}

}

And by extending HealthCheckServlet.ContextListener for HealthCheckRegistry:

2.15. Metrics Servlets 25

Metrics Documentation, Release @project.version@

public class MyHealthCheckServletContextListener extends HealthCheckServlet.
→˓ContextListener {

public static final HealthCheckRegistry HEALTH_CHECK_REGISTRY = new␣
→˓HealthCheckRegistry();

@Override
protected HealthCheckRegistry getHealthCheckRegistry() {

return HEALTH_CHECK_REGISTRY;
}

}

Then you will need to register servlet context listeners either in you web.xml or annotating the class with
@WebListener if you are in servlet 3.0 environment. In web.xml:

<listener>
<listener-class>com.example.MyMetricsServletContextListener</listener-class>

</listener>
<listener>

<listener-class>com.example.MyHealthCheckServletContextListener</listener-class>
</listener>

You will also need to register AdminServlet in web.xml:

<servlet>
<servlet-name>metrics</servlet-name>
<servlet-class>com.codahale.metrics.servlets.AdminServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>metrics</servlet-name>
<url-pattern>/metrics/*</url-pattern>

</servlet-mapping>

2.16 Instrumenting Web Applications

The metrics-servlet module provides a Servlet filter which has meters for status codes, a counter for the number
of active requests, and a timer for request duration. By default the filter will use com.codahale.metrics.servlet.
InstrumentedFilter as the base name of the metrics. You can use the filter in your web.xml like this:

<filter>
<filter-name>instrumentedFilter</filter-name>
<filter-class>com.codahale.metrics.servlet.InstrumentedFilter</filter-class>

</filter>
<filter-mapping>

<filter-name>instrumentedFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

An optional filter init-param name-prefix can be specified to override the base name of the metrics associated with
the filter mapping. This can be helpful if you need to instrument multiple url patterns and give each a unique name.

26 Chapter 2. User Manual

Metrics Documentation, Release @project.version@

<filter>
<filter-name>instrumentedFilter</filter-name>
<filter-class>com.codahale.metrics.servlet.InstrumentedFilter</filter-class>
<init-param>

<param-name>name-prefix</param-name>
<param-value>authentication</param-value>

</init-param>
</filter>
<filter-mapping>

<filter-name>instrumentedFilter</filter-name>
<url-pattern>/auth/*</url-pattern>

</filter-mapping>

You will need to add your MetricRegistry to the servlet context as an attribute named com.codahale.
metrics.servlet.InstrumentedFilter.registry. You can do this using the Servlet API by extending
InstrumentedFilterContextListener:

public class MyInstrumentedFilterContextListener extends␣
→˓InstrumentedFilterContextListener {
public static final MetricRegistry REGISTRY = new MetricRegistry();

@Override
protected MetricRegistry getMetricRegistry() {

return REGISTRY;
}

}

2.17 Third Party Libraries

If you’re looking to integrate with something not provided by the main Metrics libraries, check out the many third-party
libraries which extend Metrics:

2.17.1 Instrumented Libraries

• camel-metrics provides component for your Apache Camel route.

• hdrhistogram-metrics-reservoir provides a Histogram reservoir backed by HdrHistogram.

• jersey2-metrics provides integration with Jersey 2.

• jersey-metrics-filter provides integration with Jersey 1.

• metrics-aspectj provides integration with AspectJ.

• metrics-cdi provides integration with CDI environments,

• metrics-guice provides integration with Guice.

• metrics-guice-servlet provides Guice Servlet integration with AdminServlet.

• metrics-okhttp provides integration with OkHttp.

• metrics-play provides an integration with the Play Framework.

• metrics-spring provides integration with Spring.

2.17. Third Party Libraries 27

https://github.com/InitiumIo/camel-metrics
https://camel.apache.org/
https://bitbucket.org/marshallpierce/hdrhistogram-metrics-reservoir
http://hdrhistogram.org/
https://bitbucket.org/marshallpierce/jersey2-metrics
https://jersey.java.net/
https://github.com/palominolabs/jersey-metrics-filter
https://github.com/astefanutti/metrics-aspectj
http://eclipse.org/aspectj/
https://github.com/astefanutti/metrics-cdi
http://www.cdi-spec.org/
https://github.com/palominolabs/metrics-guice
https://code.google.com/p/google-guice/
https://github.com/palominolabs/metrics-guice-servlet
https://github.com/google/guice/wiki/Servlets
https://github.com/raskasa/metrics-okhttp
http://square.github.io/okhttp
https://github.com/kenshoo/metrics-play
https://www.playframework.com/
https://github.com/ryantenney/metrics-spring
http://spring.io/

Metrics Documentation, Release @project.version@

• wicket-metrics provides easy integration for your Wicket application.

2.17.2 Language Wrappers

• metrics-clojure provides an API optimized for Clojure.

• metrics-scala provides an API optimized for Scala.

2.17.3 Reporters

• finagle-metrics provides a reporter for a Finagle service.

• kafka-dropwizard-metrics allows Kafka producers, consumers, and streaming applications to register their built-
in metrics with a Dropwizard Metrics registry.

• MetricCatcher Turns JSON over UDP into Metrics so that non-jvm languages can know what’s going on too.

• metrics-cassandra provides a reporter for Apache Cassandra.

• metrics-circonus provides a registry and reporter for sending metrics (including full histograms) to Circonus.

• metrics-datadog provides a reporter to send data to Datadog.

• metrics-elasticsearch-reporter provides a reporter for elasticsearch

• metrics-hadoop-metrics2-reporter provides a reporter for Hadoop Metrics2.

• metrics-hawkular provides a reporter for Hawkular Metrics.

• metrics-influxdb provides a reporter which announces measurements to InfluxDB

• metrics-instrumental provides a reporter to send data to Instrumental.

• metrics-kafka provides a reporter for Kafka.

• metrics-librato provides a reporter for Librato Metrics, a scalable metric collection, aggregation, monitoring,
and alerting service.

• metrics-mongodb-reporter provides a reporter for MongoDB.

• metrics-munin-reporter provides a reporter for Munin

• metrics-new-relic provides a reporter which sends data to New Relic.

• metrics-reporter-config DropWizard-esque YAML configuration of reporters.

• metrics-signalfx provides a reporter to send data to SignalFx.

• metrics-spark-reporter provides a reporter for Apache Spark Streaming.

• metrics-splunk provides a reporter for Splunk.

• metrics-statsd provides a Metrics 2.x and 3.x reporter for StatsD

• metrics-zabbiz provides a reporter for Zabbix.

• sematext-metrics-reporter provides a reporter for SPM.

28 Chapter 2. User Manual

https://github.com/NitorCreations/wicket-metrics
http://wicket.apache.org/
https://github.com/sjl/metrics-clojure
https://github.com/erikvanoosten/metrics-scala
https://github.com/rlazoti/finagle-metrics
https://twitter.github.io/finagle/
https://github.com/SimpleFinance/kafka-dropwizard-reporter
https://github.com/addthis/MetricCatcher
https://github.com/brndnmtthws/metrics-cassandra
https://cassandra.apache.org/
https://github.com/circonus-labs/metrics-circonus
https://www.circonus.com/
https://github.com/coursera/metrics-datadog
http://www.datadoghq.com/
https://github.com/elasticsearch/elasticsearch-metrics-reporter-java
http://www.elasticsearch.org/
https://github.com/joshelser/dropwizard-hadoop-metrics2
https://hadoop.apache.org/docs/r2.7.2/api/org/apache/hadoop/metrics2/package-summary.html
https://github.com/hawkular/hawkular-dropwizard-reporter
http://www.hawkular.org/
https://github.com/novaquark/metrics-influxdb
http://influxdb.org/
https://github.com/egineering-llc/metrics-instrumental
http://instrumentalapp.com/
https://github.com/hengyunabc/metrics-kafka
http://kafka.apache.org/
https://github.com/librato/metrics-librato
https://metrics.librato.com/
https://github.com/aparnachaudhary/mongodb-metrics-reporter
https://www.mongodb.org/
https://github.com/slashidea/metrics-munin-reporter
http://munin-monitoring.org/
https://github.com/palominolabs/metrics-new-relic
http://newrelic.com/
https://github.com/addthis/metrics-reporter-config
https://github.com/signalfx/signalfx-java
http://www.signalfx.com/
https://github.com/ippontech/metrics-spark-reporter
https://spark.apache.org/streaming/
https://github.com/zenmoto/metrics-splunk
http://www.splunk.com/
https://github.com/ReadyTalk/metrics-statsd
https://github.com/etsy/statsd/
https://github.com/hengyunabc/metrics-zabbix
http://www.zabbix.com/
https://github.com/sematext/sematext-metrics-reporter
http://sematext.com/spm/index.html

Metrics Documentation, Release @project.version@

2.17.4 Advansed metrics implementations

• rolling-metrics provides a collection of advanced metrics with rolling time window semantic, such as Rolling-
Counter, Hit-Ratio, Top and Reservoir backed by HdrHistogram.

2.17. Third Party Libraries 29

https://github.com/vladimir-bukhtoyarov/rolling-metrics

Metrics Documentation, Release @project.version@

30 Chapter 2. User Manual

CHAPTER

THREE

ABOUT METRICS

3.1 Contributors

Many, many thanks to:

• Alan Woodward

• Alexander Reelsen

• Alex Lambert

• Anil V

• Anthony Dahanne

• Antonin Stefanutti

• Artem Prigoda

• Bartosz Krasiński

• Bart Prokop

• Basil James Whitehouse III

• Benjamin Gehrels

• Ben Tatham

• Bogdan Storozhuk

• Brenden Matthews

• Brian

• Brian Roberts

• Bruce Mitchener

• cburroughs

• ceetav

• Charles Care

• Chris Birchall

• Christopher Gray

• Christopher Swenson

• ciamac

• Coda Hale

31

https://github.com/romseygeek
https://github.com/spinscale
https://github.com/alambert
https://github.com/avaitla
https://github.com/anthonydahanne
https://github.com/astefanutti
https://github.com/arteam
https://github.com/krasinski
https://github.com/bartprokop
https://github.com/basil3whitehouse
https://github.com/BGehrels
https://github.com/bentatham
https://github.com/storozhukBM
https://github.com/brndnmtthws
https://github.com/codelotus
https://github.com/flicken
https://github.com/waywardmonkeys
https://github.com/cburroughs
https://github.com/ceetav
https://github.com/ccare
https://github.com/cb372
https://github.com/chrisgray
https://github.com/swenson
https://github.com/ciamac
https://github.com/codahale

Metrics Documentation, Release @project.version@

• Collin Van Dyck

• Corentin Chary

• C. Scott Andreas

• Dag Liodden

• Dale Wijnand

• Dan Brown

• Dan Everton

• Daniel James

• Dan Revel

• David M. Karr

• David Schlosnagle

• David Sutherland

• Diwaker Gupta

• Drew Stephens

• Eduard Martinescu

• Edwin Shin

• Erik van Oosten

• Evan Jones

• Fabrizio Cannizzo

• François Beausoleil

• Gabor Arki

• George Spalding

• Gerolf Seitz

• gilbode

• Greg Bowyer

• Gunnar Ahlberg

• Henri Tremblay

• ho3rexqj

• Hussein Elsayed

• Ian Strachan

• Istvan Meszaros

• Ivan Dyedov

• Jackson Davis

• James Burkhart

• James Casey

• Jan-Helge Bergesen

32 Chapter 3. About Metrics

https://github.com/collinvandyck
https://github.com/iksaif
https://github.com/cscotta
https://github.com/daggerrz
https://github.com/dwijnand
https://github.com/jdanbrown
https://github.com/deverton
https://github.com/dwhjames
https://github.com/nopolabs
https://github.com/davidmichaelkarr
https://github.com/schlosna
https://github.com/djsutho
https://github.com/diwakergupta
https://github.com/dinomite
https://github.com/Arvoreen
https://github.com/eddies
https://github.com/erikvanoosten
https://github.com/evanj
https://github.com/smartrics
https://github.com/francois
https://github.com/arkigabor
https://github.com/georgespalding
https://github.com/gseitz
https://github.com/gilbode
https://github.com/GregBowyer
https://github.com/gunnarahlberg
https://github.com/henri-tremblay
https://github.com/ho3rexqj
https://github.com/husseincoder
https://github.com/ianestrachan
https://github.com/IstvanM
https://github.com/idyedov
https://github.com/jcdavis
https://github.com/fourk
https://github.com/jamesc
https://github.com/jhberges

Metrics Documentation, Release @project.version@

• Janne Sinivirta

• Jason A. Beranek

• Jason Slagle

• Jason Whitlark

• Jeff Hodges

• Jeff Klukas

• Jeff Wartes

• Jens Schauder

• Jesper Blomquist

• Jesse Eichar

• Jochen Schalanda

• Joe Ellis

• Joel Takvorian

• John-John Tedro

• John Wang

• Jordan Focht

• Juha Syrjälä

• Julio Lopez

• Justin Plock

• Kevin Clark

• Kevin Menard

• Kevin Yeh

• konnik

• Larry Shatzer, Jr.

• Luke Amdor

• Mahesh Tiyyagura

• Mark Menard

• Marlon Bernardes

• Mårten Gustafson

• Martin Jöhren

• Martin Traverso

• Matheus Cabral

• Matt Abrams

• Matthew Gilliard

• Matthew O’Connor

• Matt Veitas

3.1. Contributors 33

https://github.com/vertti
https://github.com/jasonberanek
https://github.com/jmslagle
https://github.com/jwhitlark
https://github.com/jmhodges
https://github.com/jklukas
https://github.com/randomstatistic
https://github.com/schauder
https://github.com/jebl01
https://github.com/jesseeichar
https://github.com/joschi
https://github.com/ellisjoe
https://github.com/jotak
https://github.com/udoprog
https://github.com/javasoze
https://github.com/jfocht
https://github.com/jsyrjala
https://github.com/julio-maginatics
https://github.com/jplock
https://github.com/kevinclark
https://github.com/nirvdrum
https://github.com/kyeah
https://github.com/konnik
https://github.com/larrys
https://github.com/rubbish
https://github.com/tmahesh
https://github.com/MarkMenard
https://github.com/marlonbernardes
https://github.com/chids
https://github.com/matlockx
https://github.com/martint
https://github.com/mcgois
https://github.com/abramsm
https://github.com/mjg123
https://github.com/oconnor0
https://github.com/mveitas

Metrics Documentation, Release @project.version@

• Michał Minicki

• Miikka Koskinen

• Neil Prosser

• Nick Babcock

• Nick Telford

• Norbert Potocki

• Pablo Fernandez

• Patryk Najda

• Paul Brown

• Paul Doran

• Paul Sanwald

• Philipp Hauer

• Raman Gupta

• Realbot

• Robby Walker

• Ron Klein

• Ryan Campbell

• Ryan McCrone

• Ryan Tenney

• saadmufti

• Sam Perman

• Samy Dindane

• Sean Laurent

• Sebastian Lövdahl

• Sergey Nazarov

• Silvia Mandalà

• sofax

• Steve Fosdal

• Steven Schlansker

• stockmaj

• Stuart Gunter

• Thomas Cashman

• Tobias Bieniek

• Tobias Lidskog

• Tom Akehurst

• Tomasz Guzik

34 Chapter 3. About Metrics

https://github.com/martel
https://github.com/miikka
https://github.com/neilprosser
https://github.com/nickbabcock
https://github.com/nicktelford
https://github.com/norbertpotocki
https://github.com/fernandezpablo85
https://github.com/patrox
https://github.com/prb
https://github.com/dorzey
https://github.com/pcsanwald
https://github.com/phauer
https://github.com/rocketraman
https://github.com/realbot
https://github.com/robbywalker
https://github.com/kleinron
https://github.com/recampbell
https://github.com/rwmccro
https://github.com/ryantenney
https://github.com/saadmufti
https://github.com/samperman
https://github.com/Dinduks
https://github.com/organicveggie
https://github.com/slovdahl
https://github.com/phearnot
https://github.com/simad
https://github.com/sofax
https://github.com/sfosdal
https://github.com/stevenschlansker
https://github.com/stockmaj
https://github.com/stuartgunter
https://github.com/tomcashman
https://github.com/Turbo87
https://github.com/tobli
https://github.com/tomakehurst
https://github.com/tguzik

Metrics Documentation, Release @project.version@

• Tomasz Nurkiewicz

• Tom Golden

• tvleminckx

• v-garki

• Vladimir Bukhtoyarov

• Volker Fritzsch

• Wolfgang Hoschek

• Wolfgang Schell

• yeyangever

• Zach A. Thomas

3.2 Release Notes

3.2.1 v3.2.3: Jun 28 2017

• Improve ScheduledReporter convertDurations precision #1115

• Suppress all kinds of Throwables raised by report() #1128

• ExponentiallyDecayingReservoir was giving incorrect values in the snapshot if the inactive period was too
long #1135

• Ability to get default metrics registry without an exception #1140

• Ability to get default health check registry without an exception #1152

• SlidingTimeWindowArrayReservoir as a fast alternative of SlidingTimeWindowReservoir #1139

• Avoid a NPE in toString of HealthCheck.Result #1141

3.2.2 v3.1.5: Jun 2 2017

• More robust lookup of ThreadLocal and LongAdder on JDK6 (e.g. WebLogic) #1136

3.2.3 v3.2.2: Mar 20 2017

• Fix creating a uniform snapshot from a collection #1111

• Register metrics defined at Resource level #1105

3.2. Release Notes 35

https://github.com/nurkiewicz
https://github.com/TomRK1089
https://github.com/tvleminckx
https://github.com/v-garki
https://github.com/vladimir-bukhtoyarov
https://github.com/volker
https://github.com/whoschek
https://github.com/jetztgradnet
https://github.com/yeyangever
https://github.com/zathomas
https://github.com/dropwizard/metrics/pull/1115
https://github.com/dropwizard/metrics/pull/1128
https://github.com/dropwizard/metrics/pull/1135
https://github.com/dropwizard/metrics/pull/1140
https://github.com/dropwizard/metrics/pull/1152
https://github.com/dropwizard/metrics/pull/1139
https://github.com/dropwizard/metrics/pull/1141
https://github.com/dropwizard/metrics/pull/1136
https://github.com/dropwizard/metrics/pull/1111
https://github.com/dropwizard/metrics/pull/1105

Metrics Documentation, Release @project.version@

3.2.4 v3.2.1: Mar 10 2017

• Support for shutting down the health check registry. #1084

• Added support for the default shared health check registry name #1095 #1095

• SharedMetricRegistries are now thread-safe. #1094

• The size of the snapshot of a histogram is reported via JMX. #1102

• Don’t ignore the counter attribute for reporters. #1090

• Added support for disabling attributes in ConsoleReporter. #1092

• Rollbacked GraphiteSanitize to replacing whitespaces. #1099

3.2.5 v3.1.4: Mar 10 2017

• Fix accidentally broken Graphite UDP reporter #1100

3.2.6 v3.2.0: Feb 24 2017

• GraphiteReporter opens a new TCP connection when sending metrics instead of maintaining a persisted con-
nection. #1047

• GraphiteReporter retries DNS lookups in case of a lookup failure. #1064

• ScheduledReporter suppresses all kind of exceptions raised by the report method. #1049

• JDK’s ThreadLocalRandom is now used by default. #1052

• JDK’s LongAdder is now used by default. #1055

• Fixed a race condition bug in ExponentiallyDecayingReservoir. #1033

• Fixed a long overflow bug in SlidingTimeWindowReservoir. #1063

• AdminServlet supports CPU profiling. #927

• GraphiteReporter sanitizes metrics. #938

• Support for publishing BigInteger and BigDecimal metrics in GraphiteReporter. #933

• Support for publishing boolean metrics in GraphiteReporter. #905

• Added support for overriding the format of floating numbers in GraphiteReporter. #1073

• Added support for disabling reporting of metric attributes. #1048

• Reporters are more user friendly for managed environments like GAE or JEE. #1018

• Support for setting a custom initial delay for reporters. #999

• Support for custom details in a result of a health check. #663

• Added a listener for health checks. #1068

• Support for asynchronous health checks #1077

• Health checks are reported as unhealthy on exceptions. #783

• Allow setting a custom prefix for Jetty’s InstrumentedQueuedThreadPool. #947

• Allow setting custom prefix for Jetty’s QueuedThreadPool. #908

• Added support for Jetty 9.3 and higher. #1038

36 Chapter 3. About Metrics

https://github.com/dropwizard/metrics/pull/1084
https://github.com/dropwizard/metrics/pull/1095
https://github.com/dropwizard/metrics/pull/1095
https://github.com/dropwizard/metrics/pull/1102
https://github.com/dropwizard/metrics/pull/1090
https://github.com/dropwizard/metrics/pull/1092
https://github.com/dropwizard/metrics/pull/1099
https://github.com/dropwizard/metrics/pull/1100
https://github.com/dropwizard/metrics/pull/1047
https://github.com/dropwizard/metrics/pull/1064
https://github.com/dropwizard/metrics/pull/1049
https://github.com/dropwizard/metrics/pull/1052
https://github.com/dropwizard/metrics/pull/1055
https://github.com/dropwizard/metrics/pull/1033
https://github.com/dropwizard/metrics/pull/1063
https://github.com/dropwizard/metrics/pull/927
https://github.com/dropwizard/metrics/pull/938
https://github.com/dropwizard/metrics/pull/933
https://github.com/dropwizard/metrics/pull/905
https://github.com/dropwizard/metrics/pull/1073
https://github.com/dropwizard/metrics/pull/1048
https://github.com/dropwizard/metrics/pull/1018
https://github.com/dropwizard/metrics/pull/999
https://github.com/dropwizard/metrics/pull/663
https://github.com/dropwizard/metrics/pull/1068
https://github.com/dropwizard/metrics/pull/1077
https://github.com/dropwizard/metrics/pull/783
https://github.com/dropwizard/metrics/pull/947
https://github.com/dropwizard/metrics/pull/908
https://github.com/dropwizard/metrics/pull/1038

Metrics Documentation, Release @project.version@

• Fixed instrumentation of Jetty9 async servlets. #1074

• Added support for JCache/JSR 107 metrics. #1010

• Added thread-safe getters for metrics with custom instantiations. #1023

• Added an overload of Timer#time that takes a Runnable. #989

• Support extracting the request URI from wrapped requests in HttpClientMetricNameStrategies. #947

• Support for the log4j2 xml-based config. #900

• Internal Striped64 doesn’t depend on sun.misc.Unsafe anymore. #966

• Optimized creation of UniformSnapshot. #970

• Added a memory pool gauge to the JVM memory usage metrics. #786

• Added support for async servlets for metric-servlet. #796

• Opt-in default shared metric registry. #801

• Added support for patterns in MBean object names #809

• Allow a pluggable strategy for the name of the CSV files for CsvReporter. #882

• Upgraded to slf4j 1.22

• Upgraded to Jackson 2.6.6

• Upgraded to amqp-client 3.6.6

• Upgraded to httpclient 4.5.2

• Upgraded to log4j2 2.3

• Upgraded to logback 1.1.10

3.2.7 v3.1.3: Feb 24 2017

• GraphiteReporter opens a new TCP connection when sending metrics instead of maintaining a persisted con-
nection. #1036

• GraphiteReporter retries DNS lookups in case of a lookup failure. #1064

• ScheduledReporter suppresses all kind of exceptions raised by the report method. #1040

• JDK’s ThreadLocalRandom is now used by default. #1052

• JDK’s LongAdder is now used by default. #1055

• Fixed a race condition bug in ExponentiallyDecayingReservoir. #1046

• Fixed a long overflow bug in SlidingTimeWindowReservoir. #1072

3.2. Release Notes 37

https://github.com/dropwizard/metrics/pull/1074
https://github.com/dropwizard/metrics/pull/1010
https://github.com/dropwizard/metrics/pull/1023
https://github.com/dropwizard/metrics/pull/989
https://github.com/dropwizard/metrics/pull/947
https://github.com/dropwizard/metrics/pull/900
https://github.com/dropwizard/metrics/pull/966
https://github.com/dropwizard/metrics/pull/970
https://github.com/dropwizard/metrics/pull/786
https://github.com/dropwizard/metrics/pull/796
https://github.com/dropwizard/metrics/pull/801
https://github.com/dropwizard/metrics/pull/809
https://github.com/dropwizard/metrics/pull/882
https://github.com/dropwizard/metrics/pull/1036
https://github.com/dropwizard/metrics/pull/1064
https://github.com/dropwizard/metrics/pull/1040
https://github.com/dropwizard/metrics/pull/1052
https://github.com/dropwizard/metrics/pull/1055
https://github.com/dropwizard/metrics/pull/1046
https://github.com/dropwizard/metrics/pull/1072

Metrics Documentation, Release @project.version@

3.2.8 v3.1.0: Sen 10 2014

https://groups.google.com/forum/#!topic/metrics-user/zwzHnMBcAX4

• Upgrade to Jetty 9.1 (metrics-jetty9, Jetty 9.0 module renamed to metrics-jetty9-legacy)

• Add log4j2 support (metrics-log4j2)

• Upgrade to Jersey2 (metrics-jersey2)

• Add httpasyncclient support (metrics-httpasyncclient)

• Changed maven groupId to io.dropwizard.metrics

• Enable Java8 builds on Travis, fix javadocs and disable some doclinting

• Fixing some compilation warnings about missing generics and varargs invocation

• Instrumentation for java.util.concurrent classes

• ExponentiallyDecayingReservoir: quantiles weighting

• Loosen type requirements for JmxAttributeGauge constructor

• SlidingWindowReservoir - ArrayOutOfBoundsException thrown if # of Reservoir examples exceeds Integer max
value

• Classloader metrics

• Add an instrumented ScheduledExecutorService

• Fix race condition in InstrumentedThreadFactoryTest

• Correct comparison of System.nanoTime in SlidingTimeWindowReservoir

• Add SharedHealthCheckRegistries class

• Migrate benchmarks from Caliper to JMH

• New annotations: @CachedGauge, @Counted, @Metric

• Support for annotations on classes and constructors

• Allow @Metric on methods and parameters

• Add @Inherited and @Documented on all type annotations

• Adapted ehcache integration to latest ehcache version 2.8.3

• Upgrade to HttpClient 4.3

• InstrumentedHandler: Remove duplicate calls to requests.update(. . .)

• New metric ‘utilization-max’ to track thread usage out of max pool size in jetty

• Replaced Jetty-specific Request with Servlet API interfaces

• Jetty 8: Avoid NPE if InstrumentedQueuedThreadPool gauges are read too early

• Jetty 8: Call updateResponses onComplete of ContinuationListener

• Allow specifying a custom prefix Jetty 9 InstrumentedHandler

• MetricsModule is serializing wrong minute rates for timers

• MeterSerializer.serialize had m1_rate and m15_rate transposed

• Add CachedThreadStatesGaugeSet

• Monitor count of deadlock threads

38 Chapter 3. About Metrics

https://groups.google.com/forum/#!topic/metrics-user/zwzHnMBcAX4

Metrics Documentation, Release @project.version@

• Prevent exceptions from ThreadDumpServlet on Google AppEngine

• Upgrade to logback 1.1.1

• Allow InstrumentedAppender use in logback.xml

• Use getClass() in place of AbstractInstrumentedFilter.class in generated metric names

• Update MetricsServlet with support for JSONP as alternative to CORS

• Specify the base name of the metrics as a filter init-param for the metrics captured in the AbstractInstrumented-
Filter

• Add option to provide MetricFilter to MetricsServlet

• AdminServlet generates link to pretty printed healthchecks

• MetricsServlet.ContextListener doesn’t initialize the context correctly

• Every reporter implements Reporter interface to indicate that is a Reporter

• Added support for passing a ScheduledExecutorService to ScheduledReporters

• Improve the ScheduledReporter#stop method

• Ensure ScheduledReporters get unique thread pools.

• Suppress runtime exceptions thrown from ScheduledReporter#report

• Ability to inject a factory of ObjectName

• Lazy fetch of PlatformMBeanServer

• JMX Reporter throws exception when metric name contains an asterisk

• onTimerRemoved in JmxListener calls registered.add

• Support for mBean servers that rewrite the supplied ObjectName upon registration

• Graphite reporter does not notify when Graphite/Carbon server is unreachable

• Persistent connections to Graphite

• Graphite constructor accepts host/port

• Graphtie Pickle sender

• Graphite UDP sender

• Graphite AMQP sender

• Add a threshold/minimum value to report before converting results to 0

• Report to multiple gmetric instances

• Escape slahes on ganglia metric names

• Upgrade slf4j to 1.7.6

• Enhancement for logging level option on Slf4jReporter

3.2. Release Notes 39

Metrics Documentation, Release @project.version@

3.2.9 v3.0.1: Jul 23 2013

• Fixed NPE in MetricRegistry#name.

• ScheduledReporter and JmxReporter now implement Closeable.

• Fixed cast exception for async requests in metrics-jetty9.

• Added support for Access-Control-Allow-Origin to MetricsServlet.

• Fixed numerical issue with Meter EWMA rates.

• Deprecated AdminServletContextListener in favor of MetricsServlet.ContextListener and
HealthCheckServlet.ContextListener.

• Added additional constructors to HealthCheckServlet and MetricsServlet.

3.2.10 v3.0.0: June 10 2013

• Renamed DefaultWebappMetricsFilter to InstrumentedFilter.

• Renamed MetricsContextListener to InstrumentedFilterContextListener and made it fully abstract
to avoid confusion.

• Renamed MetricsServletContextListener to AdminServletContextListener and made it fully abstract
to avoid confusion.

• Upgraded to Servlet API 3.1.

• Upgraded to Jackson 2.2.2.

• Upgraded to Jetty 8.1.11.

3.2.11 v3.0.0-RC1: May 31 2013

• Added SharedMetricRegistries, a singleton for sharing named metric registries.

• Fixed XML configuration for metrics-ehcache.

• Fixed XML configuration for metrics-jersey.

• Fixed XML configuration for metrics-log4j.

• Fixed XML configuration for metrics-logback.

• Fixed a counting bug in metrics-jetty9’s InstrumentedHandler.

• Added MetricsContextListener to metrics-servlet.

• Added MetricsServletContextListener to metrics-servlets.

• Extracted the Counting interface.

• Reverted SlidingWindowReservoir to a synchronized implementation.

• Added the implementation version to the JAR manifests.

• Made dependencies for all modules conform to Maven Enforcer’s convergence rules.

• Fixed Slf4jReporter’s logging of 99th percentiles.

• Added optional name prefixing to GraphiteReporter.

• Added metric-specific overrides of rate and duration units to JmxReporter.

40 Chapter 3. About Metrics

Metrics Documentation, Release @project.version@

• Documentation fixes.

3.2.12 v3.0.0-BETA3: May 13 2013

• Added ScheduledReporter#report() for manual reporting.

• Fixed overly-grabby catches in HealthCheck and InstrumentedResourceMethodDispatchProvider.

• Fixed phantom reads in SlidingWindowReservoir.

• Revamped metrics-jetty9, removing InstrumentedConnector and improving the API.

• Fixed OSGi imports for sun.misc.

• Added a strategy class for HttpClient metrics.

• Upgraded to Jetty 9.0.3.

• Upgraded to Jackson 2.2.1.

• Upgraded to Ehcache 2.6.6.

• Upgraded to Logback 1.0.13.

• Upgraded to HttpClient 4.2.5.

• Upgraded to gmetric4j 1.0.3, which allows for host spoofing.

3.2.13 v3.0.0-BETA2: Apr 22 2013

• Metrics is now under the com.codahale.metrics package, with the corresponding changes in Maven artifact
groups. This should allow for an easier upgrade path without classpath conflicts.

• MetricRegistry no longer has a name.

• Added metrics-jetty9 for Jetty 9.

• JmxReporter takes an optional domain property to disambiguate multiple reporters.

• Fixed Java 6 compatibility problem. (Also added Java 6 as a CI environment.)

• Added MetricRegistryListener.Base.

• Switched Counter, Meter, and EWMA to use JSR133’s LongAdder instead of AtomicLong, improving contended
concurrency.

• Added MetricRegistry#buildMap(), allowing for custom map implementations in MetricRegistry.

• Added MetricRegistry#removeMatching(MetricFilter).

• Changed metrics-json to optionally depend on metrics-healthcheck.

• Upgraded to Jetty 8.1.10 for metrics-jetty8.

3.2. Release Notes 41

Metrics Documentation, Release @project.version@

3.2.14 v3.0.0-BETA1: Apr 01 2013

• Total overhaul of most of the core Metrics classes:

– Metric names are now just dotted paths like com.example.Thing, allowing for very flexible scopes, etc.

– Meters and timers no longer have rate or duration units; those are properties of reporters.

– Reporter architecture has been radically simplified, fixing many bugs.

– Histograms and timers can take arbitrary reservoir implementations.

– Added sliding window reservoir implementations.

– Added MetricSet for sets of metrics.

• Changed package names to be OSGi-compatible and added OSGi bundling.

• Extracted JVM instrumentation to metrics-jvm.

• Extracted Jackson integration to metrics-json.

• Removed metrics-guice, metrics-scala, and metrics-spring.

• Renamed metrics-servlet to metrics-servlets.

• Renamed metrics-web to metrics-servlet.

• Renamed metrics-jetty to metrics-jetty8.

• Many more small changes!

3.2.15 v2.2.0: Nov 26 2012

• Removed all OSGi bundling. This will be back in 3.0.

• Added InstrumentedSslSelectChannelConnector and InstrumentedSslSocketConnector.

• Made all metric names JMX-safe.

• Upgraded to Ehcache 2.6.2.

• Upgraded to Apache HttpClient 4.2.2.

• Upgraded to Jersey 1.15.

• Upgraded to Log4j 1.2.17.

• Upgraded to Logback 1.0.7.

• Upgraded to Spring 3.1.3.

• Upgraded to Jetty 8.1.8.

• Upgraded to SLF4J 1.7.2.

• Replaced usage of Unsafe in InstrumentedResourceMethodDispatchProvider with type erasure trickery.

42 Chapter 3. About Metrics

Metrics Documentation, Release @project.version@

3.2.16 v2.1.5: Nov 19 2012

• Upgraded to Jackson 2.1.1.

3.2.17 v2.1.4: Nov 15 2012

• Added OSGi bundling manifests.

3.2.18 v2.1.3: Aug 06 2012

• Upgraded to Apache HttpClient 4.2.1.

• Changed InstrumentedClientConnManager to extend PoolingClientConnectionManager instead of the
deprecated ThreadSafeClientConnManager.

• Fixed a bug in ExponentiallyDecayingSample with long periods of inactivity.

• Fixed problems with re-registering metrics in JMX.

• Added support for DnsResolver instances to InstrumentedClientConnManager.

• Added support for formatted health check error messages.

3.2.19 v2.1.2: Apr 11 2012

• Fixed double-registration in metrics-guice.

3.2.20 v2.1.1: Mar 13 2012

• Fixed instrumentation of all usages of InstrumentedHttpClient.

3.2.21 v2.1.0: Mar 12 2012

• Added support for Java 7’s direct and mapped buffer pool stats in VirtualMachineMetrics and
metrics-servlet.

• Added support for XML configuration in metrics-ehcache.

• metrics-spring now support @Gauge-annotated fields.

• Opened GraphiteReporter up for extension.

• Added group and type to metrics-annotations, metrics-guice, metrics-jersey, and
metrics-spring.

• Fixed handling of non-int gauges in GangliaReporter.

• Fixed NullPointerException errors in metrics-spring.

• General improvements to metrics-spring, including allowing custom Clock instances.

3.2. Release Notes 43

Metrics Documentation, Release @project.version@

3.2.22 v2.0.3: Feb 24 2012

• Change logging of InstanceNotFoundException exceptions thrown while unregistering a metric in
JmxReporter to TRACE. It being WARN resulted in huge log dumps preventing process shutdowns when ap-
plications had ~1K+ metrics.

• Upgraded to Spring 3.1.1 for metrics-spring.

• Upgraded to JDBI 2.31.2.

• Upgraded to Jersey 1.12.

• Upgraded to Jetty 7.6.1.

• Fixed rate units for meters in GangliaReporter.

3.2.23 v2.0.2: Feb 09 2012

• InstrumentationModule in metrics-guice now uses the default MetricsRegistry and
HealthCheckRegistry.

3.2.24 v2.0.1: Feb 08 2012

• Fixed a concurrency bug in JmxReporter.

3.2.25 v2.0.0: Feb 07 2012

• Upgraded to Jackson 1.9.4.

• Upgraded to Jetty 7.6.0.

• Added escaping for garbage collector and memory pool names in GraphiteReporter.

• Fixed the inability to start and stop multiple reporter instances.

• Switched to using a backported version of ThreadLocalRandom for UniformSample and
ExponentiallyDecayingSample to reduce lock contention on random number generation.

• Removed Ordered from TimedAnnotationBeanPostProcessor in metrics-spring.

• Upgraded to JDBI 2.31.1.

• Upgraded to Ehcache 2.5.1.

• Added #timerContext() to Scala Timer.

3.2.26 v2.0.0-RC0: Jan 19 2012

• Added FindBugs checks to the build process.

• Fixed the catching of Error instances thrown during health checks.

• Added enable static methods to CsvReporter and changed CsvReporter(File, MetricsRegistry) to
CsvReporter(MetricsRegistry, File).

• Slimmed down InstrumentedEhcache.

• Hid the internals of GangliaReporter.

44 Chapter 3. About Metrics

Metrics Documentation, Release @project.version@

• Hid the internals of metrics-guice.

• Changed metrics-httpclient to consistently associate metrics with the org.apache class being extended.

• Hid the internals of metrics-httpclient.

• Rewrote InstrumentedAppender in metrics-log4j. It no longer forwards events to an appender. Instead,
you can just attach it to your root logger to instrument logging.

• Rewrote InstrumentedAppender in metrics-logback. No major API changes.

• Fixed bugs with @ExceptionMetered-annotated resource methods in metrics-jersey.

• Fixed bugs generating Snapshot instances from concurrently modified collections.

• Fixed edge case in MetricsServlet’s thread dumps where one thread could be missed.

• Added RatioGauge and PercentGauge.

• Changed InstrumentedQueuedThreadPool’s percent-idle gauge to be a ratio.

• Decomposed MetricsServlet into a set of focused servlets: HealthCheckServlet, MetricsServlet,
PingServlet, and ThreadDumpServlet. The top-level servlet which provides the HTML menu page is now
AdminServlet.

• Added metrics-spring.

3.2.27 v2.0.0-BETA19: Jan 07 2012

• Added absolute memory usage to MetricsServlet.

• Extracted @Timed etc. to metrics-annotations.

• Added metrics-jersey, which provides a class allowing you to automatically instrument all @Timed,
@Metered, and @ExceptionMetered-annotated resource methods.

• Moved all classes in metrics-scala from com.yammer.metrics to com.yammer.metrics.scala.

• Renamed CounterMetric to Counter.

• Renamed GaugeMetric to Gauge.

• Renamed HistogramMetric to Histogram.

• Renamed MeterMetric to Meter.

• Renamed TimerMetric to Timer.

• Added ToggleGauge, which returns 1 the first time it’s called and 0 every time after that.

• Now licensed under Apache License 2.0.

• Converted VirtualMachineMetrics to a non-singleton class.

• Removed Utils.

• Removed deprecated constructors from Meter and Timer.

• Removed LoggerMemoryLeakFix.

• DeathRattleExceptionHandler now logs to SLF4J, not syserr.

• Added MetricsRegistry#groupedMetrics().

• Removed Metrics#allMetrics().

• Removed Metrics#remove(MetricName).

3.2. Release Notes 45

Metrics Documentation, Release @project.version@

• Removed MetricsRegistry#threadPools() and #newMeterTickThreadPool() and added
#newScheduledThreadPool.

• Added MetricsRegistry#shutdown().

• Renamed ThreadPools#shutdownThreadPools() to #shutdown().

• Replaced HealthCheck’s abstract name method with a required constructor parameter.

• HealthCheck#check() is now protected.

• Moved DeadlockHealthCheck from com.yammer.metrics.core to com.yammer.metrics.utils.

• Added HealthCheckRegistry#unregister(HealthCheck).

• Fixed typo in VirtualMachineMetrics and MetricsServlet: commited to committed.

• Changed MetricsRegistry#createName to protected.

• All metric types are created exclusively through MetricsRegistry now.

• Metrics.newJmxGauge and MetricsRegistry.newJmxGauge are deprecated.

• Fixed heap metrics in VirtualMachineMetrics.

• Added Snapshot, which calculates quantiles.

• Renamed Percentiled to Sampling and dropped percentile and percentiles in favor of producing
Snapshot instances. This affects both Histogram and Timer.

• Renamed Summarized to Summarizable.

• Changed order of CsvReporter’s construction parameters.

• Renamed VirtualMachineMetrics.GarbageCollector to VirtualMachineMetrics.
GarbageCollectorStats.

• Moved Guice/Servlet support from metrics-servlet to metrics-guice.

• Removed metrics-aop.

• Removed newJmxGauge from both Metrics and MetricsRegistry. Just use JmxGauge.

• Moved JmxGauge to com.yammer.metrics.util.

• Moved MetricPredicate to com.yammer.metrics.core.

• Moved NameThreadFactory into ThreadPools and made ThreadPools package-visible.

• Removed Timer#values(), Histogram#values(), and Sample#values(). Use getSnapshot() instead.

• Removed Timer#dump(File) and Histogram#dump(File), and Sample#dump(File). Use
Snapshot#dump(File) instead.

3.2.28 v2.0.0-BETA18: Dec 16 2011

• Added DeathRattleExceptionHandler.

• Fixed NPE in VirtualMachineMetrics.

• Added decorators for connectors and thread pools in metrics-jetty.

• Added TimerMetric#time() and TimerContext.

• Added a shorter factory method for millisecond/second timers.

• Switched tests to JUnit.

46 Chapter 3. About Metrics

Metrics Documentation, Release @project.version@

• Improved logging in GangliaReporter.

• Improved random number generation for UniformSample.

• Added metrics-httpclient for instrumenting Apache HttpClient 4.1.

• Massively overhauled the reporting code.

• Added support for instrumented, non-public methods in metrics-guice.

• Added @ExceptionMetered to metrics-guice.

• Added group prefixes to GangliaReporter.

• Added CvsReporter, which outputs metric values to .csv files.

• Improved metric name sanitization in GangliaReporter.

• Added Metrics.shutdown() and improved metrics lifecycle behavior.

• Added metrics-web.

• Upgraded to ehcache 2.5.0.

• Many, many refactorings.

• metrics-servlet now responds with 501 Not Implememented when no health checks have been registered.

• Many internal refactorings for testability.

• Added histogram counts to metrics-servlet.

• Fixed a race condition in ExponentiallyDecayingSample.

• Added timezone and locale support to ConsoleReporter.

• Added metrics-aop for Guiceless support of method annotations.

• Added metrics-jdbi which adds instrumentation to JDBI.

• Fixed NPE for metrics which belong to classes in the default package.

• Now deploying artifacts to Maven Central.

3.2.29 v2.0.0-BETA17: Oct 07 2011

• Added an option message to successful health check results.

• Fixed locale issues in GraphiteReporter.

• Added GangliaReporter.

• Added per-HTTP method timers to InstrumentedHandler in metrics-jetty.

• Fixed a thread pool leak for meters.

• Added #dump(File) to HistogramMetric and TimerMetric.

• Upgraded to Jackson 1.9.x.

• Upgraded to slf4j 1.6.2.

• Upgraded to logback 0.9.30.

• Upgraded to ehcache 2.4.5.

• Surfaced Metrics.removeMetric().

3.2. Release Notes 47

http://www.jdbi.org

Metrics Documentation, Release @project.version@

3.2.30 v2.0.0-BETA16: Aug 23 2011

• Fixed a bug in GC monitoring.

3.2.31 v2.0.0-BETA15: Aug 15 2011

• Fixed dependency scopes for metrics-jetty.

• Added time and VM version to vm output of MetricsServlet.

• Dropped com.sun.mangement-based GC instrumentation in favor of a java.lang.management-based one.
getLastGcInfo has a nasty native memory leak in it, plus it often returned incorrect data.

• Upgraded to Jackson 1.8.5.

• Upgraded to Jetty 7.4.5.

• Added sanitization for metric names in GraphiteReporter.

• Extracted out a Clock interface for timers for non-wall-clock timing.

• Extracted out most of the remaining statics into MetricsRegistry and HealthCheckRegistry.

• Added an init parameter to MetricsServlet for disabling the jvm section.

• Added a Guice module for MetricsServlet.

• Added dynamic metric names.

• Upgraded to ehcache 2.4.5.

• Upgraded to logback 0.9.29.

• Allowed for the removal of metrics.

• Added the ability to filter metrics exposed by a reporter to those which match a given predicate.

3.2.32 v2.0.0-BETA14: Jul 05 2011

• Moved to Maven for a build system and extracted the Scala façade to a metrics-scala module which is now
the only cross-built module. All other modules dropped the Scala version suffix in their artifactId.

• Fixed non-heap metric name in GraphiteReporter.

• Fixed stability error in GraphiteReporter when dealing with unavailable servers.

• Fixed error with anonymous, instrumented classes.

• Fixed error in MetricsServlet when a gauge throws an exception.

• Fixed error with bogus GC run times.

• Link to the pretty JSON output from the MetricsServlet menu page.

• Fixed potential race condition in histograms’ variance calculations.

• Fixed memory pool reporting for the G1 collector.

48 Chapter 3. About Metrics

Metrics Documentation, Release @project.version@

3.2.33 v2.0.0-BETA13: May 13 2011

• Fixed a bug in the initial startup phase of the JmxReporter.

• Added metrics-ehcache, for the instrumentation of Ehcache instances.

• Fixed a typo in metrics-jetty’s InstrumentedHandler.

• Added name prefixes to GraphiteReporter.

• Added JVM metrics reporting to GraphiteReporter.

• Actually fixed MetricsServlet’s links when the servlet has a non-root context path.

• Now cross-building for Scala 2.9.0.

• Added pretty query parameter for MetricsServlet to format the JSON object for human consumption.

• Added no-cache headers to the MetricsServlet responses.

3.2.34 v2.0.0-BETA12: May 09 2011

• Upgraded to Jackson 1.7.6.

• Added a new instrumented Log4J appender.

• Added a new instrumented Logback appender. Thanks to Bruce Mitchener (@waywardmonkeys) for the patch.

• Added a new reporter for the Graphite aggregation system. Thanks to Mahesh Tiyyagura (@tmahesh) for the
patch.

• Added scoped metric names.

• Added Scala 2.9.0.RC{2,3,4} as build targets.

• Added meters to Jetty handler for the percent of responses which have 4xx or 5xx status codes.

• Changed the Servlet API to be a provided dependency. Thanks to Mårten Gustafson (@chids) for the patch.

• Separated project into modules:

– metrics-core: A dependency-less project with all the core metrics.

– metrics-graphite: A reporter for the [Graphite](http://graphite.wikidot.com) aggregation system.

– metrics-guice: Guice AOP support.

– metrics-jetty: An instrumented Jetty handler.

– metrics-log4j: An instrumented Log4J appender.

– metrics-logback: An instrumented Logback appender.

– metrics-servlet: The Metrics servlet with context listener.

3.2. Release Notes 49

http://graphite.wikidot.com
http://graphite.wikidot.com

Metrics Documentation, Release @project.version@

3.2.35 v2.0.0-BETA11: Apr 27 2011

• Added thread state and deadlock detection metrics.

• Fix VirtualMachineMetrics’ initialization.

• Context path fixes for the servlet.

• Added the @Gauge annotation.

• Big reworking of the exponentially-weighted moving average code for meters. Thanks to JD Maturen (@sku)
and John Ewart (@johnewart) for pointing this out.

• Upgraded to Guice 3.0.

• Upgraded to Jackson 1.7.5.

• Upgraded to Jetty 7.4.0.

• Big rewrite of the servlet’s thread dump code.

• Fixed race condition in ExponentiallyDecayingSample. Thanks to Martin Traverso (@martint) for the patch.

• Lots of spelling fixes in Javadocs. Thanks to Bruce Mitchener (@waywardmonkeys) for the patch.

• Added Scala 2.9.0.RC1 as a build target. Thanks to Bruce Mitchener (@waywardmonkeys) for the patch.

• Patched a hilarious memory leak in java.util.logging.

3.2.36 v2.0.0-BETA10: Mar 25 2011

• Added Guice AOP annotations: @Timed and @Metered.

• Added HealthCheck#name().

• Added Metrics.newJmxGauge().

• Moved health checks into HealthChecks.

• Upgraded to Jackson 1.7.3 and Jetty 7.3.1.

3.2.37 v2.0.0-BETA9: Mar 14 2011

• Fixed JmxReporter lag.

• Added default arguments to timers and meters.

• Added default landing page to the servlet.

• Improved the performance of ExponentiallyDecayingSample.

• Fixed an integer overflow bug in UniformSample.

• Added linear scaling to ExponentiallyDecayingSample.

50 Chapter 3. About Metrics

Metrics Documentation, Release @project.version@

3.2.38 v2.0.0-BETA8: Mar 01 2011

• Added histograms.

• Added biased sampling for timers.

• Added dumping of timer/histogram samples via the servlet.

• Added dependency on jackon-mapper.

• Added classname filtering for the servlet.

• Added URI configuration for the servlet.

3.2.39 v2.0.0-BETA7: Jan 12 2011

• Added JettyHandler.

• Made the Servlet dependency optional.

3.2.40 v2.0.0-BETA6: Jan 12 2011

• Fix JmxReporter initialization.

3.2.41 v2.0.0-BETA5: Jan 11 2011

• Dropped Counter#++ and Counter#--.

• Added Timer#update.

• Upgraded to Jackson 1.7.0.

• Made JMX reporting implicit.

• Added health checks.

3.2.42 v2.0.0-BETA3: Dec 23 2010

• Fixed thread names and some docs.

3.2.43 v2.0.0-BETA2: Dec 22 2010

• Fixed a memory leak in MeterMetric.

3.2.44 v2.0.0-BETA1: Dec 22 2010

• Total rewrite in Java.

3.2. Release Notes 51

Metrics Documentation, Release @project.version@

3.2.45 v1.0.7: Sep 21 2010

• Added median to Timer.

• Added p95 to Timer (95th percentile).

• Added p98 to Timer (98th percentile).

• Added p99 to Timer (99th percentile).

3.2.46 v1.0.6: Jul 15 2010

• Now compiled exclusively for 2.8.0 final.

3.2.47 v1.0.5: Jun 01 2010

• Documentation fix.

• Added TimedToggle, which may or may not be useful at all.

• Now cross-building for RC2 and RC3.

3.2.48 v1.0.4: Apr 27 2010

• Blank Timer instances (i.e., those which have recorded no timings yet) no longer explode when asked for metrics
for that which does not yet exist.

• Nested classes, companion objects, and singletons don’t have trailing $ characters messing up JMX’s good looks.

3.2.49 v1.0.3: Apr 16 2010

• Fixed some issues with the implicit.ly plumbing.

• Tweaked the sample size for Timer, giving it 99.9% confidence level with a %5 margin of error (for a normally
distributed variable, which it almost certainly isn’t.)

• Sample#iterator returns only the recorded data, not a bunch of zeros.

• Moved units of Timer, Meter, and LoadMeter to their own attributes, which allows for easy export of Metrics
data via JMX to things like Ganglia or whatever.

3.2.50 v1.0.2: Mar 08 2010

• Timer now uses Welford’s algorithm for calculating running variance, which means no more hilariously wrong
standard deviations (e.g., NaN).

• Timer now supports +=(Long) for pre-recorded, nanosecond-precision timings.

52 Chapter 3. About Metrics

http://implicit.ly
http://ganglia.sourceforge.net/

Metrics Documentation, Release @project.version@

3.2.51 v1.0.1: Mar 05 2010

• changed Sample to use an AtomicReferenceArray

3.2.52 v1.0.0: Feb 27 2010

• Initial release

3.2. Release Notes 53

	Getting Started
	Setting Up Maven
	Meters
	Console Reporter
	Complete getting started
	The Registry
	Gauges
	Counters
	Histograms
	Timers
	Health Checks
	Reporting Via JMX
	Reporting Via HTTP
	Other Reporting

	User Manual
	Metrics Core
	Metric Registries
	Metric Names
	Gauges
	JMX Gauges
	Ratio Gauges
	Cached Gauges
	Derivative Gauges

	Counters
	Histograms
	Uniform Reservoirs
	Exponentially Decaying Reservoirs
	Sliding Window Reservoirs
	Sliding Time Window Reservoirs

	Meters
	Timers
	Metric Sets
	Reporters
	JMX
	Console
	CSV
	SLF4J
	Other Reporters

	Health Checks
	Instrumenting Ehcache
	Reporting to Ganglia
	Reporting to Graphite
	Instrumenting Apache HttpClient
	Metric naming strategies

	Instrumenting JDBI
	Instrumenting Jersey 1.x
	Instrumenting Jersey 2.x
	Instrumenting Jetty
	Instrumenting Log4j
	Instrumenting Logback
	JVM Instrumentation
	JSON Support
	Metrics Servlets
	HealthCheckServlet
	ThreadDumpServlet
	MetricsServlet
	PingServlet
	AdminServlet

	Instrumenting Web Applications
	Third Party Libraries
	Instrumented Libraries
	Language Wrappers
	Reporters
	Advansed metrics implementations

	About Metrics
	Contributors
	Release Notes
	v3.2.3: Jun 28 2017
	v3.1.5: Jun 2 2017
	v3.2.2: Mar 20 2017
	v3.2.1: Mar 10 2017
	v3.1.4: Mar 10 2017
	v3.2.0: Feb 24 2017
	v3.1.3: Feb 24 2017
	v3.1.0: Sen 10 2014
	v3.0.1: Jul 23 2013
	v3.0.0: June 10 2013
	v3.0.0-RC1: May 31 2013
	v3.0.0-BETA3: May 13 2013
	v3.0.0-BETA2: Apr 22 2013
	v3.0.0-BETA1: Apr 01 2013
	v2.2.0: Nov 26 2012
	v2.1.5: Nov 19 2012
	v2.1.4: Nov 15 2012
	v2.1.3: Aug 06 2012
	v2.1.2: Apr 11 2012
	v2.1.1: Mar 13 2012
	v2.1.0: Mar 12 2012
	v2.0.3: Feb 24 2012
	v2.0.2: Feb 09 2012
	v2.0.1: Feb 08 2012
	v2.0.0: Feb 07 2012
	v2.0.0-RC0: Jan 19 2012
	v2.0.0-BETA19: Jan 07 2012
	v2.0.0-BETA18: Dec 16 2011
	v2.0.0-BETA17: Oct 07 2011
	v2.0.0-BETA16: Aug 23 2011
	v2.0.0-BETA15: Aug 15 2011
	v2.0.0-BETA14: Jul 05 2011
	v2.0.0-BETA13: May 13 2011
	v2.0.0-BETA12: May 09 2011
	v2.0.0-BETA11: Apr 27 2011
	v2.0.0-BETA10: Mar 25 2011
	v2.0.0-BETA9: Mar 14 2011
	v2.0.0-BETA8: Mar 01 2011
	v2.0.0-BETA7: Jan 12 2011
	v2.0.0-BETA6: Jan 12 2011
	v2.0.0-BETA5: Jan 11 2011
	v2.0.0-BETA3: Dec 23 2010
	v2.0.0-BETA2: Dec 22 2010
	v2.0.0-BETA1: Dec 22 2010
	v1.0.7: Sep 21 2010
	v1.0.6: Jul 15 2010
	v1.0.5: Jun 01 2010
	v1.0.4: Apr 27 2010
	v1.0.3: Apr 16 2010
	v1.0.2: Mar 08 2010
	v1.0.1: Mar 05 2010
	v1.0.0: Feb 27 2010

