
Dropwizard Documentation
Release 2.0.36-SNAPSHOT

Coda Hale

Jan 31, 2023

GENERAL

1 Security 3

2 Frequently Asked Questions 5

3 Getting Started 7

4 Dropwizard Core 21

5 Dropwizard Dependency Injection 55

6 Dropwizard Client 59

7 Dropwizard JDBI3 65

8 Dropwizard Migrations 69

9 Dropwizard Hibernate 75

10 Dropwizard Authentication 79

11 Dropwizard Forms 87

12 Dropwizard Validation 89

13 Dropwizard Views 99

14 Dropwizard & Scala 103

15 Testing Dropwizard 105

16 Upgrade Notes 117

17 Dropwizard Example, Step by Step 127

18 Dropwizard Configuration Reference 129

19 Dropwizard Internals 161

20 Contributors 165

21 Sponsors 177

22 Other Versions 179

i

ii

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Dropwizard pulls together stable, mature libraries from the Java ecosystem into a simple, light-weight package that
lets you focus on getting things done.

Dropwizard has out-of-the-box support for sophisticated configuration, application metrics, logging, operational
tools, and much more, allowing you and your team to ship a production-quality web service in the shortest time possible.

GENERAL 1

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

2 GENERAL

CHAPTER

ONE

SECURITY

No known issues exist

3

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

4 Chapter 1. Security

CHAPTER

TWO

FREQUENTLY ASKED QUESTIONS

What’s a Dropwizard?
A character in a K.C. Green web comic.

How is Dropwizard licensed?
It’s licensed under the Apache License v2.

How can I commit to Dropwizard?
Go to the GitHub project, fork it, and submit a pull request. We prefer small, single-purpose pull requests over
large, multi-purpose ones. We reserve the right to turn down any proposed changes, but in general we’re delighted
when people want to make our projects better!

5

http://gunshowcomic.com/316
http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/dropwizard/dropwizard

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

6 Chapter 2. Frequently Asked Questions

CHAPTER

THREE

GETTING STARTED

Getting Started will guide you through the process of creating a simple Dropwizard Project: Hello
World. Along the way, we’ll explain the various underlying libraries and their roles, important con-
cepts in Dropwizard, and suggest some organizational techniques to help you as your project grows.
(Or you can just skip to the fun part.)

3.1 Overview

Dropwizard straddles the line between being a library and a framework. Its goal is to provide performant, reliable
implementations of everything a production-ready web application needs. Because this functionality is extracted into
a reusable library, your application remains lean and focused, reducing both time-to-market and maintenance burdens.

3.1.1 Jetty for HTTP

Because you can’t be a web application without HTTP, Dropwizard uses the Jetty HTTP library to embed an incredibly
tuned HTTP server directly into your project. Instead of handing your application off to a complicated application
server, Dropwizard projects have a main method which spins up an HTTP server. Running your application as a
simple process eliminates a number of unsavory aspects of Java in production (no PermGen issues, no application
server configuration and maintenance, no arcane deployment tools, no class loader troubles, no hidden application
logs, no trying to tune a single garbage collector to work with multiple application workloads) and allows you to use
all of the existing Unix process management tools instead.

3.1.2 Jersey for REST

For building RESTful web applications, we’ve found nothing beats Jersey (the JAX-RS reference implementation) in
terms of features or performance. It allows you to write clean, testable classes which gracefully map HTTP requests to
simple Java objects. It supports streaming output, matrix URI parameters, conditional GET requests, and much, much
more.

7

https://www.eclipse.org/jetty/
https://jersey.github.io/
https://jcp.org/en/jsr/detail?id=311

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

3.1.3 Jackson for JSON

In terms of data formats, JSON has become the web’s lingua franca, and Jackson is the king of JSON on the JVM.
In addition to being lightning fast, it has a sophisticated object mapper, allowing you to export your domain models
directly.

3.1.4 Metrics for metrics

The Metrics library rounds things out, providing you with unparalleled insight into your code’s behavior in your pro-
duction environment.

3.1.5 And Friends

In addition to Jetty, Jersey, and Jackson, Dropwizard also includes a number of libraries to help you ship more quickly
and with fewer regrets.

• Logback and slf4j for performant and flexible logging.

• Hibernate Validator, the JSR 349 reference implementation, provides an easy, declarative framework for validat-
ing user input and generating helpful and i18n-friendly error messages.

• The Apache HttpClient and Jersey client libraries allow for both low- and high-level interaction with other web
services.

• JDBI is the most straightforward way to use a relational database with Java.

• Liquibase is a great way to keep your database schema in check throughout your development and release cycles,
applying high-level database refactorings instead of one-off DDL scripts.

• Freemarker and Mustache are simple templating systems for more user-facing applications.

• Joda Time is a very complete, sane library for handling dates and times.

Now that you’ve gotten the lay of the land, let’s dig in!

3.2 Setting Up Using Maven

We recommend you use Maven for new Dropwizard applications. If you’re a big Ant / Ivy, Buildr, Gradle, SBT,
Leiningen, or Gant fan, that’s cool, but we use Maven, and we’ll be using Maven as we go through this example
application. If you have any questions about how Maven works, Maven: The Complete Reference should have what
you’re looking for.

You have three alternatives from here:

1. Create a project using dropwizard-archetype:

mvn archetype:generate -DarchetypeGroupId=io.dropwizard.archetypes -
→˓DarchetypeArtifactId=java-simple -DarchetypeVersion=[REPLACE WITH A VALID␣
→˓DROPWIZARD VERSION]

2. Look at the dropwizard-example

3. Follow the tutorial below to see how you can include it in your existing project

8 Chapter 3. Getting Started

https://github.com/FasterXML/jackson
http://metrics.dropwizard.io/
https://www.eclipse.org/jetty/
https://jersey.github.io/
https://github.com/FasterXML/jackson
https://logback.qos.ch/
https://www.slf4j.org/
http://hibernate.org/validator/
https://jcp.org/en/jsr/detail?id=349
http://hc.apache.org/httpcomponents-client-ga/index.html
https://jersey.github.io/
http://jdbi.github.io/
http://www.liquibase.org
http://freemarker.org/
https://mustache.github.io/
http://www.joda.org/joda-time/
http://maven.apache.org
http://ant.apache.org/
http://ant.apache.org/ivy/
http://buildr.apache.org/
https://www.gradle.org/
https://github.com/harrah/xsbt/wiki
https://github.com/technomancy/leiningen
https://github.com/Gant/Gant
https://www.sonatype.com/ebooks
https://github.com/dropwizard/dropwizard/tree/master/dropwizard-archetypes
https://github.com/dropwizard/dropwizard/tree/master/dropwizard-example

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

3.2.1 Tutorial

First, add a dropwizard.version property to your POM with the current version of Dropwizard (which is 2.0.36-
SNAPSHOT):

<properties>
<dropwizard.version>INSERT VERSION HERE</dropwizard.version>

</properties>

Add the dropwizard-core library as a dependency:

<dependencies>
<dependency>

<groupId>io.dropwizard</groupId>
<artifactId>dropwizard-core</artifactId>
<version>${dropwizard.version}</version>

</dependency>
</dependencies>

Alright, that’s enough XML. We’ve got a Maven project set up now, and it’s time to start writing real code.

3.3 Creating A Configuration Class

Each Dropwizard application has its own subclass of the Configuration class which specifies environment-specific
parameters. These parameters are specified in a YAML configuration file which is deserialized to an instance of your
application’s configuration class and validated.

The application we’ll be building is a high-performance Hello World service, and one of our requirements is that we
need to be able to vary how it says hello from environment to environment. We’ll need to specify at least two things to
begin with: a template for saying hello and a default name to use in case the user doesn’t specify their name.

Here’s what our configuration class will look like, full example conf here:

package com.example.helloworld;

import io.dropwizard.Configuration;
import com.fasterxml.jackson.annotation.JsonProperty;
import javax.validation.constraints.NotEmpty;

public class HelloWorldConfiguration extends Configuration {
@NotEmpty
private String template;

@NotEmpty
private String defaultName = "Stranger";

@JsonProperty
public String getTemplate() {

return template;
}

@JsonProperty
public void setTemplate(String template) {

(continues on next page)

3.3. Creating A Configuration Class 9

http://www.yaml.org/
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/src/main/java/com/example/helloworld/HelloWorldConfiguration.java

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

this.template = template;
}

@JsonProperty
public String getDefaultName() {

return defaultName;
}

@JsonProperty
public void setDefaultName(String name) {

this.defaultName = name;
}

}

There’s a lot going on here, so let’s unpack a bit of it.

When this class is deserialized from the YAML file, it will pull two root-level fields from the YAML object:
template, the template for our Hello World saying, and defaultName, the default name to use. Both template
and defaultName are annotated with @NotEmpty, so if the YAML configuration file has blank values for either or is
missing template entirely an informative exception will be thrown, and your application won’t start.

Both the getters and setters for template and defaultName are annotated with @JsonProperty, which allows Jack-
son to both deserialize the properties from a YAML file but also to serialize it.

Note: The mapping from YAML to your application’s Configuration instance is done by Jackson. This means your
Configuration class can use all of Jackson’s object-mapping annotations. The validation of @NotEmpty is handled
by Hibernate Validator, which has a wide range of built-in constraints for you to use.

Our YAML file will then look like the below, full example yml here:

template: Hello, %s!
defaultName: Stranger

Dropwizard has many more configuration parameters than that, but they all have sane defaults so you can keep your
configuration files small and focused.

So save that YAML file in the directory you plan to run the fat jar from (see below) as hello-world.yml, because
we’ll be getting up and running pretty soon, and we’ll need it. Next up, we’re creating our application class!

3.4 Creating An Application Class

Combined with your project’s Configuration subclass, its Application subclass forms the core of your Drop-
wizard application. The Application class pulls together the various bundles and commands which provide basic
functionality. (More on that later.) For now, though, our HelloWorldApplication looks like this:

package com.example.helloworld;

import io.dropwizard.Application;
import io.dropwizard.setup.Bootstrap;
import io.dropwizard.setup.Environment;
import com.example.helloworld.resources.HelloWorldResource;

(continues on next page)

10 Chapter 3. Getting Started

https://github.com/FasterXML/jackson
http://wiki.fasterxml.com/JacksonAnnotations
http://docs.jboss.org/hibernate/validator/4.2/reference/en-US/html_single/#validator-defineconstraints-builtin
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

import com.example.helloworld.health.TemplateHealthCheck;

public class HelloWorldApplication extends Application<HelloWorldConfiguration> {
public static void main(String[] args) throws Exception {

new HelloWorldApplication().run(args);
}

@Override
public String getName() {

return "hello-world";
}

@Override
public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {

// nothing to do yet
}

@Override
public void run(HelloWorldConfiguration configuration,

Environment environment) {
// nothing to do yet

}

}

As you can see, HelloWorldApplication is parameterized with the application’s configuration type,
HelloWorldConfiguration. An initialize method is used to configure aspects of the application required before
the application is run, like bundles, configuration source providers, etc. Also, we’ve added a static main method,
which will be our application’s entry point. Right now, we don’t have any functionality implemented, so our run
method is a little boring. Let’s fix that!

3.5 Creating A Representation Class

Before we can get into the nuts-and-bolts of our Hello World application, we need to stop and think about our API.
Luckily, our application needs to conform to an industry standard, RFC 1149, which specifies the following JSON
representation of a Hello World saying:

{
"id": 1,
"content": "Hi!"

}

The id field is a unique identifier for the saying, and content is the textual representation of the saying. (Thankfully,
this is a fairly straight-forward industry standard.)

To model this representation, we’ll create a representation class:

package com.example.helloworld.api;

import com.fasterxml.jackson.annotation.JsonProperty;

(continues on next page)

3.5. Creating A Representation Class 11

http://www.ietf.org/rfc/rfc1149.txt

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

public class Saying {
private long id;

private String content;

public Saying() {
// Jackson deserialization

}

public Saying(long id, String content) {
this.id = id;
this.content = content;

}

@JsonProperty
public long getId() {

return id;
}

@JsonProperty
public String getContent() {

return content;
}

}

This is a pretty simple POJO, but there are a few things worth noting here.

First, it’s immutable. This makes Saying instances very easy to reason about in multi-threaded environments as well as
single-threaded environments. Second, it uses the JavaBeans standard for the id and content properties. This allows
Jackson to serialize it to the JSON we need. The Jackson object mapping code will populate the id field of the JSON
object with the return value of #getId(), likewise with content and #getContent().

Note: The JSON serialization here is done by Jackson, which supports far more than simple JavaBean objects like this
one. In addition to the sophisticated set of annotations, you can even write your custom serializers and deserializers.

Now that we’ve got our representation class, it makes sense to start in on the resource it represents.

3.6 Creating A Resource Class

Jersey resources are the meat-and-potatoes of a Dropwizard application. Each resource class is associated with a URI
template. For our application, we need a resource which returns new Saying instances from the URI /hello-world,
so our resource class looks like this:

package com.example.helloworld.resources;

import com.example.helloworld.api.Saying;
import com.codahale.metrics.annotation.Timed;

import javax.ws.rs.GET;
import javax.ws.rs.Path;

(continues on next page)

12 Chapter 3. Getting Started

https://github.com/FasterXML/jackson
https://github.com/FasterXML/jackson-annotations/wiki/Jackson-Annotations

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

import javax.ws.rs.Produces;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.MediaType;
import java.util.concurrent.atomic.AtomicLong;
import java.util.Optional;

@Path("/hello-world")
@Produces(MediaType.APPLICATION_JSON)
public class HelloWorldResource {

private final String template;
private final String defaultName;
private final AtomicLong counter;

public HelloWorldResource(String template, String defaultName) {
this.template = template;
this.defaultName = defaultName;
this.counter = new AtomicLong();

}

@GET
@Timed
public Saying sayHello(@QueryParam("name") Optional<String> name) {

final String value = String.format(template, name.orElse(defaultName));
return new Saying(counter.incrementAndGet(), value);

}
}

Finally, we’re in the thick of it! Let’s start from the top and work our way down.

HelloWorldResource has two annotations: @Path and @Produces. @Path("/hello-world") tells Jersey that this
resource is accessible at the URI /hello-world, and @Produces(MediaType.APPLICATION_JSON) lets Jersey’s
content negotiation code know that this resource produces representations which are application/json.

HelloWorldResource takes two parameters for construction: the template it uses to produce the saying and the
defaultName used when the user declines to tell us their name. An AtomicLong provides us with a cheap, thread-
safe way of generating unique(ish) IDs.

Warning: Resource classes are used by multiple threads concurrently. In general, we recommend that resources
be stateless/immutable, but it’s important to keep the context in mind.

#sayHello(Optional<String>) is the meat of this class, and it’s a fairly simple method. The
@QueryParam("name") annotation tells Jersey to map the name parameter from the query string to the name
parameter in the method. If the client sends a request to /hello-world?name=Dougie, sayHello will be called
with Optional.of("Dougie"); if there is no name parameter in the query string, sayHello will be called with
Optional.empty(). (Support for Optional is a little extra sauce that Dropwizard adds to Jersey’s existing
functionality.)

Note: If the client sends a request to /hello-world?name=, sayHello will be called with Optional.of(""). This
may seem odd at first, but this follows the standards (an application may have different behavior depending on if a
parameter is empty vs nonexistent). You can swap Optional<String> parameter with NonEmptyStringParam if
you want /hello-world?name= to return “Hello, Stranger!” For more information on resource parameters see the

3.6. Creating A Resource Class 13

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

documentation

Inside the sayHello method, we increment the counter, format the template using String.format(String,
Object...), and return a new Saying instance.

Because sayHello is annotated with @Timed, Dropwizard automatically records the duration and rate of its invocations
as a Metrics Timer.

Once sayHello has returned, Jersey takes the Saying instance and looks for a provider class which can write Saying
instances as application/json. Dropwizard has one such provider built in which allows for producing and consum-
ing Java objects as JSON objects. The provider writes out the JSON and the client receives a 200 OK response with a
content type of application/json.

3.6.1 Registering A Resource

Before that will actually work, though, we need to go back to HelloWorldApplication and add this new resource
class. In its run method we can read the template and default name from the HelloWorldConfiguration instance,
create a new HelloWorldResource instance, and then add it to the application’s Jersey environment:

@Override
public void run(HelloWorldConfiguration configuration,

Environment environment) {
final HelloWorldResource resource = new HelloWorldResource(

configuration.getTemplate(),
configuration.getDefaultName()

);
environment.jersey().register(resource);

}

When our application starts, we create a new instance of our resource class with the parameters from the configuration
file and hand it off to the Environment, which acts like a registry of all the things your application can do.

Note: A Dropwizard application can contain many resource classes, each corresponding to its own URI pattern. Just
add another @Path-annotated resource class and call register with an instance of the new class.

Before we go too far, we should add a health check for our application.

3.7 Creating A Health Check

Health checks give you a way of adding small tests to your application to allow you to verify that your application is
functioning correctly in production. We strongly recommend that all of your applications have at least a minimal set
of health checks.

Note: We recommend this so strongly, in fact, that Dropwizard will nag you should you neglect to add a health check
to your project.

Since formatting strings is not likely to fail while an application is running (unlike, say, a database connection pool),
we’ll have to get a little creative here. We’ll add a health check to make sure we can actually format the provided
template:

14 Chapter 3. Getting Started

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

package com.example.helloworld.health;

import com.codahale.metrics.health.HealthCheck;

public class TemplateHealthCheck extends HealthCheck {
private final String template;

public TemplateHealthCheck(String template) {
this.template = template;

}

@Override
protected Result check() throws Exception {

final String saying = String.format(template, "TEST");
if (!saying.contains("TEST")) {

return Result.unhealthy("template doesn't include a name");
}
return Result.healthy();

}
}

TemplateHealthCheck checks for two things: that the provided template is actually a well-formed format string, and
that the template actually produces output with the given name.

If the string is not a well-formed format string (for example, someone accidentally put Hello, %s% in the configuration
file), then String.format(String, Object...) will throw an IllegalFormatException and the health check
will implicitly fail. If the rendered saying doesn’t include the test string, the health check will explicitly fail by returning
an unhealthy Result.

3.7.1 Adding A Health Check

As with most things in Dropwizard, we create a new instance with the appropriate parameters and add it to the
Environment:

@Override
public void run(HelloWorldConfiguration configuration,

Environment environment) {
final HelloWorldResource resource = new HelloWorldResource(

configuration.getTemplate(),
configuration.getDefaultName()

);
final TemplateHealthCheck healthCheck =

new TemplateHealthCheck(configuration.getTemplate());
environment.healthChecks().register("template", healthCheck);
environment.jersey().register(resource);

}

Now we’re almost ready to go!

3.7. Creating A Health Check 15

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

3.8 Building Fat JARs

We recommend that you build your Dropwizard applications as “fat” JAR files — single .jar files which contain all
of the .class files required to run your application. This allows you to build a single deployable artifact which you can
promote from your staging environment to your QA environment to your production environment without worrying
about differences in installed libraries. To start building our Hello World application as a fat JAR, we need to configure
a Maven plugin called maven-shade. In the <build><plugins> section of your pom.xml file, add this:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.3</version>
<configuration>

<createDependencyReducedPom>true</createDependencyReducedPom>
<filters>

<filter>
<artifact>*:*</artifact>
<excludes>

<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>

</excludes>
</filter>

</filters>
</configuration>
<executions>

<execution>
<phase>package</phase>
<goals>

<goal>shade</goal>
</goals>
<configuration>

<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.

→˓ServicesResourceTransformer"/>
<transformer implementation="org.apache.maven.plugins.shade.resource.

→˓ManifestResourceTransformer">
<mainClass>com.example.helloworld.HelloWorldApplication</

→˓mainClass>
</transformer>

</transformers>
</configuration>

</execution>
</executions>

</plugin>

This configures Maven to do a couple of things during its package phase:

• Produce a pom.xml file which doesn’t include dependencies for the libraries whose contents are included in the
fat JAR.

• Exclude all digital signatures from signed JARs. If you don’t, then Java considers the signature invalid and won’t
load or run your JAR file.

• Collate the various META-INF/services entries in the JARs instead of overwriting them. (Neither Dropwizard

16 Chapter 3. Getting Started

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

nor Jersey works without those.)

• Set com.example.helloworld.HelloWorldApplication as the JAR’s MainClass. This will allow you to
run the JAR using java -jar.

Warning: If your application has a dependency which must be signed (e.g., a JCA/JCE provider or other trusted
library), you have to add an exclusion to the maven-shade-plugin configuration for that library and include that
JAR in the classpath.

Warning: Since Dropwizard is using the Java ServiceLoader functionality to register and load extensions, the
minimizeJar option of the maven-shade-plugin will lead to non-working application JARs.

3.8.1 Versioning Your JARs

Dropwizard can also use the project version if it’s embedded in the JAR’s manifest as the Implementation-Version.
To embed this information using Maven, add the following to the <build><plugins> section of your pom.xml file:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.4</version>
<configuration>

<archive>
<manifest>

<addDefaultImplementationEntries>true</addDefaultImplementationEntries>
</manifest>

</archive>
</configuration>

</plugin>

This can be handy when trying to figure out what version of your application you have deployed on a machine.

Once you’ve got that configured, go into your project directory and run mvn package (or run the package goal from
your IDE). You should see something like this:

[INFO] Including org.eclipse.jetty:jetty-util:jar:7.6.0.RC0 in the shaded jar.
[INFO] Including com.google.guava:guava:jar:10.0.1 in the shaded jar.
[INFO] Including com.google.code.findbugs:jsr305:jar:1.3.9 in the shaded jar.
[INFO] Including org.hibernate:hibernate-validator:jar:4.2.0.Final in the shaded jar.
[INFO] Including javax.validation:validation-api:jar:1.0.0.GA in the shaded jar.
[INFO] Including org.yaml:snakeyaml:jar:1.9 in the shaded jar.
[INFO] Replacing original artifact with shaded artifact.
[INFO] Replacing /Users/yourname/Projects/hello-world/target/hello-world-0.0.1-SNAPSHOT.
→˓jar with /Users/yourname/Projects/hello-world/target/hello-world-0.0.1-SNAPSHOT-shaded.
→˓jar
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 8.415s
[INFO] Finished at: Fri Dec 02 16:26:42 PST 2011

(continues on next page)

3.8. Building Fat JARs 17

http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html
http://maven.apache.org/plugins/maven-shade-plugin/examples/includes-excludes.html
http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html
https://maven.apache.org/plugins/maven-shade-plugin/shade-mojo.html#minimizeJar

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

[INFO] Final Memory: 11M/81M
[INFO] --

Congratulations! You’ve built your first Dropwizard project! Now it’s time to run it!

3.9 Running Your Application

Now that you’ve built a JAR file, it’s time to run it.

In your project directory, run this:

java -jar target/hello-world-0.0.1-SNAPSHOT.jar

You should see something like the following:

usage: java -jar hello-world-0.0.1-SNAPSHOT.jar
[-h] [-v] {server} ...

positional arguments:
{server} available commands

optional arguments:
-h, --help show this help message and exit
-v, --version show the service version and exit

Dropwizard takes the first command line argument and dispatches it to a matching command. In this case, the only
command available is server, which runs your application as an HTTP server. The server command requires a
configuration file, so let’s go ahead and give it the YAML file we previously saved:

java -jar target/hello-world-0.0.1-SNAPSHOT.jar server hello-world.yml

You should see something like the following:

INFO [2011-12-03 00:38:32,927] io.dropwizard.cli.ServerCommand: Starting hello-world
INFO [2011-12-03 00:38:32,931] org.eclipse.jetty.server.Server: jetty-7.x.y-SNAPSHOT
INFO [2011-12-03 00:38:32,936] org.eclipse.jetty.server.handler.ContextHandler: started␣
→˓o.e.j.s.ServletContextHandler{/,null}
INFO [2011-12-03 00:38:32,999] com.sun.jersey.server.impl.application.
→˓WebApplicationImpl: Initiating Jersey application, version 'Jersey: 1.10 11/02/2011␣
→˓03:53 PM'
INFO [2011-12-03 00:38:33,041] io.dropwizard.setup.Environment:

GET /hello-world (com.example.helloworld.resources.HelloWorldResource)

INFO [2011-12-03 00:38:33,215] org.eclipse.jetty.server.handler.ContextHandler: started␣
→˓o.e.j.s.ServletContextHandler{/,null}
INFO [2011-12-03 00:38:33,235] org.eclipse.jetty.server.AbstractConnector: Started␣
→˓BlockingChannelConnector@0.0.0.0:8080 STARTING
INFO [2011-12-03 00:38:33,238] org.eclipse.jetty.server.AbstractConnector: Started␣
→˓SocketConnector@0.0.0.0:8081 STARTING

18 Chapter 3. Getting Started

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Your Dropwizard application is now listening on ports 8080 for application requests and 8081 for administration
requests. If you press ^C, the application will shut down gracefully, first closing the server socket, then waiting for
in-flight requests to be processed, then shutting down the process itself.

However, while it’s up, let’s give it a whirl! Click here to say hello! Click here to get even friendlier!

So, we’re generating sayings. Awesome. But that’s not all your application can do. One of the main reasons for using
Dropwizard is the out-of-the-box operational tools it provides, all of which can be found on the admin port.

If you click through to the metrics resource, you can see all of your application’s metrics represented as a JSON object.

The threads resource allows you to quickly get a thread dump of all the threads running in that process.

Hint: When a Jetty worker thread is handling an incoming HTTP request, the thread name is set to the method and
URI of the request. This can be very helpful when debugging a poorly-behaving request.

The healthcheck resource runs the health check class we wrote. You should see something like this:

* deadlocks: OK
* template: OK

template here is the result of your TemplateHealthCheck, which unsurprisingly passed. deadlocks is a built-in
health check which looks for deadlocked JVM threads and prints out a listing if any are found.

3.10 Next Steps

Well, congratulations. You’ve got a Hello World application ready for production (except for the lack of tests) that’s
capable of doing 30,000-50,000 requests per second. Hopefully, you’ve gotten a feel for how Dropwizard combines
Jetty, Jersey, Jackson, and other stable, mature libraries to provide a phenomenal platform for developing RESTful web
applications.

There’s a lot more to Dropwizard than is covered here (commands, bundles, servlets, advanced configuration, valida-
tion, HTTP clients, database clients, views, etc.), all of which is covered by the User Manual.

3.10. Next Steps 19

http://localhost:8080/hello-world
http://localhost:8080/hello-world?name=Successful+Dropwizard+User
http://localhost:8081/
http://localhost:8081/metrics
http://localhost:8081/threads
http://localhost:8081/healthcheck

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

20 Chapter 3. Getting Started

CHAPTER

FOUR

DROPWIZARD CORE

The dropwizard-coremodule provides you with everything you’ll need for most of your applications.

It includes:

• Jetty, a high-performance HTTP server.

• Jersey, a full-featured RESTful web framework.

• Jackson, the best JSON library for the JVM.

• Metrics, an excellent library for application metrics.

• Logback, the successor to Log4j, Java’s most widely-used logging framework.

• Hibernate Validator, the reference implementation of the Java Bean Validation standard.

Dropwizard consists mostly of glue code to automatically connect and configure these components.

4.1 Organizing Your Project

If you plan on developing a client library for other developers to access your service, we recommend you separate your
projects into three Maven modules: project-api, project-client, and project-application.

project-api should contain your Representations; project-client should use those classes and an HTTP client to
implement a full-fledged client for your application, and project-application should provide the actual application
implementation, including Resources.

To give a concrete example of this project structure, let’s say we wanted to create a Stripe-like API where clients can
issue charges and the server would echo the charge back to the client. stripe-api project would hold our Charge
object as both the server and client want to work with the charge and to promote code reuse, Charge objects are
stored in a shared module. stripe-app is the Dropwizard application. stripe-client abstracts away the raw
HTTP interactions and deserialization logic. Instead of using a HTTP client, users of stripe-client would just
pass in a Charge object to a function and behind the scenes, stripe-client will call the HTTP endpoint. The client
library may also take care of connection pooling, and may provide a more friendly way of interpreting error messages.
Basically, distributing a client library for your app will help other developers integrate more quickly with the service.

If you are not planning on distributing a client library for developers, one can combine project-api and
project-application into a single project, which tends to look like this:

• com.example.myapplication:

– api: Representations. Request and response bodies.

– cli: Commands

– client: Client code that accesses external HTTP services.

21

https://stripe.com/docs/api/java

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

– core: Domain implementation; where objects not used in the API such as POJOs, validations, crypto, etc,
reside.

– db: Database access classes

– health: Health Checks

– resources: Resources

– MyApplication: The application class

– MyApplicationConfiguration: configuration class

4.2 Application

The main entry point into a Dropwizard application is, unsurprisingly, the Application class. Each Application
has a name, which is mostly used to render the command-line interface. In the constructor of your Application you
can add Bundles and Commands to your application.

4.3 Configuration

Dropwizard provides a number of built-in configuration parameters. They are well documented in the example project’s
configuration and configuration reference.

Each Application subclass has a single type parameter: that of its matching Configuration subclass. These
are usually at the root of your application’s main package. For example, your User application would have
two classes: UserApplicationConfiguration, extending Configuration, and UserApplication, extending
Application<UserApplicationConfiguration>.

When your application runs Configured Commands like the server command, Dropwizard parses the provided YAML
configuration file and builds an instance of your application’s configuration class by mapping YAML field names to
object field names.

Note: If your configuration file doesn’t end in .yml or .yaml, Dropwizard tries to parse it as a JSON file.

To keep your configuration file and class manageable, we recommend grouping related configuration parameters into
independent configuration classes. If your application requires a set of configuration parameters in order to connect to
a message queue, for example, we recommend that you create a new MessageQueueFactory class:

public class MessageQueueFactory {
@NotEmpty
private String host;

@Min(1)
@Max(65535)
private int port = 5672;

@JsonProperty
public String getHost() {

return host;
}

(continues on next page)

22 Chapter 4. Dropwizard Core

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

@JsonProperty
public void setHost(String host) {

this.host = host;
}

@JsonProperty
public int getPort() {

return port;
}

@JsonProperty
public void setPort(int port) {

this.port = port;
}

public MessageQueueClient build(Environment environment) {
MessageQueueClient client = new MessageQueueClient(getHost(), getPort());
environment.lifecycle().manage(new Managed() {

@Override
public void start() {
}

@Override
public void stop() {

client.close();
}

});
return client;

}
}

In this example our factory will automatically tie our MessageQueueClient connection to the lifecycle of our appli-
cation’s Environment.

Your main Configuration subclass can then include this as a member field:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
private MessageQueueFactory messageQueue = new MessageQueueFactory();

@JsonProperty("messageQueue")
public MessageQueueFactory getMessageQueueFactory() {

return messageQueue;
}

@JsonProperty("messageQueue")
public void setMessageQueueFactory(MessageQueueFactory factory) {

this.messageQueue = factory;
}

}

And your Application subclass can then use your factory to directly construct a client for the message queue:

4.3. Configuration 23

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

public void run(ExampleConfiguration configuration,
Environment environment) {

MessageQueueClient messageQueue = configuration.getMessageQueueFactory().
→˓build(environment);
}

Then, in your application’s YAML file, you can use a nested messageQueue field:

messageQueue:
host: mq.example.com
port: 5673

The @NotNull, @NotEmpty, @Min, @Max, and @Valid annotations are part of Dropwizard Validation functionality. If
your YAML configuration file’s messageQueue.host field was missing (or was a blank string), Dropwizard would
refuse to start and would output an error message describing the issues.

Once your application has parsed the YAML file and constructed its Configuration instance, Dropwizard then calls
your Application subclass to initialize your application’s Environment.

Note: You can override configuration settings by passing special Java system properties when starting your application.
Overrides must start with prefix dw., followed by the path to the configuration value being overridden.

For example, to override the Logging level, you could start your application like this:

java -Ddw.logging.level=DEBUG server my-config.json

This will work even if the configuration setting in question does not exist in your config file, in which case it will get
added.

You can override configuration settings in arrays of objects like this:

java -Ddw.server.applicationConnectors[0].port=9090 server my-config.json

You can override configuration settings in maps like this:

java -Ddw.database.properties.hibernate.hbm2ddl.auto=none server my-config.json

If you need to use the ‘.’ character in one of the values, you can escape it by using ‘\.’ instead.

You can also override a configuration setting that is an array of strings by using the ‘,’ character as an array element
separator. For example, to override a configuration setting myapp.myserver.hosts that is an array of strings in the config-
uration, you could start your service like this: java -Ddw.myapp.myserver.hosts=server1,server2,server3
server my-config.json

If you need to use the ‘,’ character in one of the values, you can escape it by using ‘\,’ instead.

The array override facility only handles configuration elements that are arrays of simple strings. Also, the setting in
question must already exist in your configuration file as an array; this mechanism will not work if the configuration key
being overridden does not exist in your configuration file. If it does not exist or is not an array setting, it will get added
as a simple string setting, including the ‘,’ characters as part of the string.

24 Chapter 4. Dropwizard Core

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

4.3.1 Environment variables

The dropwizard-configuration module also provides the capabilities to substitute configuration settings with the
value of environment variables using a SubstitutingSourceProvider and EnvironmentVariableSubstitutor.

public class MyApplication extends Application<MyConfiguration> {
// [...]
@Override
public void initialize(Bootstrap<MyConfiguration> bootstrap) {

// Enable variable substitution with environment variables
bootstrap.setConfigurationSourceProvider(

new SubstitutingSourceProvider(bootstrap.
→˓getConfigurationSourceProvider(),

new␣
→˓EnvironmentVariableSubstitutor(false)

)
);

}

// [...]
}

The configuration settings which should be substituted need to be explicitly written in the configuration file and follow
the substitution rules of StringSubstitutor from the Apache Commons Text library.

mySetting: ${DW_MY_SETTING}
defaultSetting: ${DW_DEFAULT_SETTING:-default value}

In general SubstitutingSourceProvider isn’t restricted to substitute environment variables but can be used to
replace variables in the configuration source with arbitrary values by passing a custom StringSubstitutor imple-
mentation.

4.3.2 SSL

SSL support is built into Dropwizard. You will need to provide your own java keystore, which is outside the scope
of this document (keytool is the command you need, and Jetty’s documentation can get you started). There is a test
keystore you can use in the Dropwizard example project.

server:
applicationConnectors:
- type: https
port: 8443
keyStorePath: example.keystore
keyStorePassword: example
validateCerts: false

By default, only secure TLSv1.2 cipher suites are allowed. Older versions of cURL, Java 6 and 7, and other clients
may be unable to communicate with the allowed cipher suites, but this was a conscious decision that sacrifices inter-
operability for security.

Dropwizard allows a workaround by specifying a customized list of cipher suites. If no lists of supported protocols
or cipher suites are specified, then the JVM defaults are used. If no lists of excluded protocols or cipher suites are
specified, then the defaults are inherited from Jetty.

4.3. Configuration 25

http://commons.apache.org/proper/commons-text/javadocs/api-release/org/apache/commons/text/StringSubstitutor.html
http://www.eclipse.org/jetty/documentation/current/configuring-ssl.html
https://github.com/dropwizard/dropwizard/tree/master/dropwizard-example

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

The following list of excluded cipher suites will allow for TLSv1 and TLSv1.1 clients to negotiate a connection similar
to pre-Dropwizard 1.0.

server:
applicationConnectors:
- type: https
port: 8443
excludedCipherSuites:
- SSL_RSA_WITH_DES_CBC_SHA
- SSL_DHE_RSA_WITH_DES_CBC_SHA
- SSL_DHE_DSS_WITH_DES_CBC_SHA
- SSL_RSA_EXPORT_WITH_RC4_40_MD5
- SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
- SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
- SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

Since the version 9.4.8 (Dropwizard 1.2.3) Jetty supports native SSL via Google’s Conscrypt which uses BoringSSL
(Google’s fork of OpenSSL) for handling cryptography. You can enable it in Dropwizard by registering the provider
in your app:

<dependency>
<groupId>org.conscrypt</groupId>
<artifactId>conscrypt-openjdk-uber</artifactId>
<version>${conscrypt.version}</version>

</dependency>

static {
Security.insertProviderAt(new OpenSSLProvider(), 1);

}

and setting the JCE provider in the configuration:

server:
type: simple
connector:
type: https
jceProvider: Conscrypt

For HTTP/2 servers you need to add an ALPN Conscrypt provider as a dependency.

<dependency>
<groupId>org.eclipse.jetty</groupId>
<artifactId>jetty-alpn-conscrypt-server</artifactId>

</dependency>

Note: If you are using Conscrypt with Java 8, you must exclude TLSv1.3 protocol as it is now enabled per default
with Conscrypt 2.0.0 but not supported by Java 8.

26 Chapter 4. Dropwizard Core

https://github.com/google/conscrypt
https://github.com/google/boringssl

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

4.4 Bootstrapping

Before a Dropwizard application can provide the command-line interface, parse a configuration file, or run as a server,
it must first go through a bootstrapping phase. This phase corresponds to your Application subclass’s initialize
method. You can add Bundles, Commands, or register Jackson modules to allow you to include custom types as part
of your configuration class.

4.5 Environments

A Dropwizard Environment consists of all the Resources, servlets, filters, Health Checks, Jersey providers, Managed
Objects, Tasks, and Jersey properties which your application provides.

Each Application subclass implements a run method. This is where you should be creating new resource instances,
etc., and adding them to the given Environment class:

@Override
public void run(ExampleConfiguration config,

Environment environment) {
// encapsulate complicated setup logic in factories
final Thingy thingy = config.getThingyFactory().build();

environment.jersey().register(new ThingyResource(thingy));
environment.healthChecks().register("thingy", new ThingyHealthCheck(thingy));

}

It’s important to keep the run method clean, so if creating an instance of something is complicated, like the Thingy
class above, extract that logic into a factory.

4.6 Health Checks

A health check is a runtime test which you can use to verify your application’s behavior in its production environment.
For example, you may want to ensure that your database client is connected to the database:

public class DatabaseHealthCheck extends HealthCheck {
private final Database database;

public DatabaseHealthCheck(Database database) {
this.database = database;

}

@Override
protected Result check() throws Exception {

if (database.isConnected()) {
return Result.healthy();

} else {
return Result.unhealthy("Cannot connect to " + database.getUrl());

}
}

}

You can then add this health check to your application’s environment:

4.4. Bootstrapping 27

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

environment.healthChecks().register("database", new DatabaseHealthCheck(database));

By sending a GET request to /healthcheck on the admin port you can run these tests and view the results:

$ curl http://dw.example.com:8081/healthcheck
{"deadlocks":{"healthy":true},"database":{"healthy":true}}

If all health checks report success, a 200 OK is returned. If any fail, a 500 Internal Server Error is returned with
the error messages and exception stack traces (if an exception was thrown).

All Dropwizard applications ship with the deadlocks health check installed by default, which uses Java 1.6’s built-in
thread deadlock detection to determine if any threads are deadlocked.

4.7 Managed Objects

Most applications involve objects which need to be started and stopped: thread pools, database connections, etc. Drop-
wizard provides the Managed interface for this. You can either have the class in question implement the #start()
and #stop() methods, or write a wrapper class which does so. Adding a Managed instance to your application’s
Environment ties that object’s lifecycle to that of the application’s HTTP server. Before the server starts, the #start()
method is called. After the server has stopped (and after its graceful shutdown period) the #stop() method is called.

For example, given a theoretical Riak client which needs to be started and stopped:

public class RiakClientManager implements Managed {
private final RiakClient client;

public RiakClientManager(RiakClient client) {
this.client = client;

}

@Override
public void start() throws Exception {

client.start();
}

@Override
public void stop() throws Exception {

client.stop();
}

}

public class MyApplication extends Application<MyConfiguration>{
@Override
public void run(MyConfiguration configuration, Environment environment) {

RiakClient client = ...;
RiakClientManager riakClientManager = new RiakClientManager(client);
environment.lifecycle().manage(riakClientManager);

}
}

If RiakClientManager#start() throws an exception–e.g., an error connecting to the server–your application will
not start and a full exception will be logged. If RiakClientManager#stop() throws an exception, the exception will
be logged but your application will still be able to shut down.

28 Chapter 4. Dropwizard Core

http://basho.com/products/

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

It should be noted that Environment has built-in factory methods for ExecutorService and
ScheduledExecutorService instances which are managed. These managed instances use
InstrumentedThreadFactory that monitors the number of threads created, running and terminated

public class MyApplication extends Application<MyConfiguration> {
@Override
public void run(MyConfiguration configuration, Environment environment) {

ExecutorService executorService = environment.lifecycle()
.executorService(nameFormat)
.maxThreads(maxThreads)
.build();

ScheduledExecutorService scheduledExecutorService = environment.lifecycle()
.scheduledExecutorService(nameFormat)
.build();

}
}

4.8 Bundles

A Dropwizard bundle is a reusable group of functionality, used to define blocks of an application’s behavior by imple-
menting the ConfiguredBundle interface.

For example, AssetBundle from the dropwizard-assets module provides a simple way to serve static assets from
your application’s src/main/resources/assets directory as files available from /assets/* (or any other path) in
your application.

Given the bundle MyConfiguredBundle and the interface MyConfiguredBundleConfig below, your application’s
Configuration subclass would need to implement MyConfiguredBundleConfig.

public class MyConfiguredBundle implements ConfiguredBundle<MyConfiguredBundleConfig> {
@Override
public void run(MyConfiguredBundleConfig applicationConfig, Environment environment)

→˓{
applicationConfig.getBundleSpecificConfig();

}

@Override
public void initialize(Bootstrap<?> bootstrap) {

}
}

public interface MyConfiguredBundleConfig {
String getBundleSpecificConfig();

}

4.8. Bundles 29

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

4.8.1 Serving Assets

Either your application or your static assets can be served from the root path, but not both. The latter is useful when
using Dropwizard to back a Javascript application. To enable it, move your application to a sub-URL.

server:
rootPath: /api/

Note: If you use the Simple server configuration, then rootPath is calculated relatively from
applicationContextPath. So, your API will be accessible from the path /application/api/

Then use an extended AssetsBundle constructor to serve resources in the assets folder from the root path. index.
htm is served as the default page.

@Override
public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {

bootstrap.addBundle(new AssetsBundle("/assets/", "/"));
}

When an AssetBundle is added to the application, it is registered as a servlet using a default name of assets. If
the application needs to have multiple AssetBundle instances, the extended constructor should be used to specify a
unique name for the AssetBundle.

@Override
public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {

bootstrap.addBundle(new AssetsBundle("/assets/css", "/css", null, "css"));
bootstrap.addBundle(new AssetsBundle("/assets/js", "/js", null, "js"));
bootstrap.addBundle(new AssetsBundle("/assets/fonts", "/fonts", null, "fonts"));

}

4.8.2 SSL Reload

By registering the SslReloadBundle your application can have new certificate information reloaded at runtime, so a
restart is not necessary.

@Override
public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {

bootstrap.addBundle(new SslReloadBundle());
}

To trigger a reload send a POST request to ssl-reload

curl -k -X POST 'https://localhost:<admin-port>/tasks/ssl-reload'

Dropwizard will use the same exact https configuration (keystore location, password, etc) when performing the reload.

Note: If anything is wrong with the new certificate (eg. wrong password in keystore), no new certificates are loaded.
So if the application and admin ports use different certificates and one of them is invalid, then none of them are reloaded.

A http 500 error is returned on reload failure, so make sure to trap for this error with whatever tool is used to trigger a
certificate reload, and alert the appropriate admin. If the situation is not remedied, next time the app is stopped, it will

30 Chapter 4. Dropwizard Core

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

be unable to start!

4.9 Commands

Commands are basic actions which Dropwizard runs based on the arguments provided on the command line. The
built-in server command, for example, spins up an HTTP server and runs your application. Each Command subclass
has a name and a set of command line options which Dropwizard will use to parse the given command line arguments.

Below is an example on how to add a command and have Dropwizard recognize it.

public class MyCommand extends Command {
public MyCommand() {

// The name of our command is "hello" and the description printed is
// "Prints a greeting"
super("hello", "Prints a greeting");

}

@Override
public void configure(Subparser subparser) {

// Add a command line option
subparser.addArgument("-u", "--user")

.dest("user")

.type(String.class)

.required(true)

.help("The user of the program");
}

@Override
public void run(Bootstrap<?> bootstrap, Namespace namespace) throws Exception {

System.out.println("Hello " + namespace.getString("user"));
}

}

Dropwizard recognizes our command once we add it in the initialize stage of our application.

public class MyApplication extends Application<MyConfiguration>{
@Override
public void initialize(Bootstrap<DropwizardConfiguration> bootstrap) {

bootstrap.addCommand(new MyCommand());
}

}

To invoke the new functionality, run the following:

4.9. Commands 31

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

java -jar <jarfile> hello dropwizard

4.9.1 Configured Commands

Some commands require access to configuration parameters and should extend the ConfiguredCommand class, using
your application’s Configuration class as its type parameter. By default, Dropwizard will treat the last argument on
the command line as the path to a YAML configuration file, parse and validate it, and provide your command with an
instance of the configuration class.

A ConfiguredCommand can have additional command line options specified, while keeping the last argument the path
to the YAML configuration.

@Override
public void configure(Subparser subparser) {

super.configure(subparser);

// Add a command line option
subparser.addArgument("-u", "--user")

.dest("user")

.type(String.class)

.required(true)

.help("The user of the program");
}

For more advanced customization of the command line (for example, having the configuration file location specified
by -c), adapt the ConfiguredCommand class as needed.

Note: If you override the configure method, you must call super.override(subparser) (or call
addFileArgument) in order to preserve the configuration file parameter in the subparser.

4.10 Tasks

A Task is a run-time action your application provides access to on the administrative port via HTTP. All Drop-
wizard applications start with: the gc task, which explicitly triggers the JVM’s garbage collection (This is use-
ful, for example, for running full garbage collections during off-peak times or while the given application is out
of rotation.); and the log-level task, which configures the level of any number of loggers at runtime (akin to
Logback’s JmxConfigurator). The execute method of a Task can be annotated with @Timed, @Metered, and
@ExceptionMetered. Dropwizard will automatically record runtime information about your tasks. Here’s a basic
task class:

public class TruncateDatabaseTask extends Task {
private final Database database;

public TruncateDatabaseTask(Database database) {
super("truncate");
this.database = database;

}

@Override
(continues on next page)

32 Chapter 4. Dropwizard Core

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-core/src/main/java/io/dropwizard/cli/ConfiguredCommand.java

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

public void execute(Map<String,List<String>> parameters, PrintWriter output) throws␣
→˓Exception {

this.database.truncate();
}

}

You can then add this task to your application’s environment:

environment.admin().addTask(new TruncateDatabaseTask(database));

Running a task can be done by sending a POST request to /tasks/{task-name} on the admin port. The task will
receive any query parameters as arguments. For example:

$ curl -X POST http://dw.example.com:8081/tasks/gc
Running GC...
Done!

You can also extend PostBodyTask to create a task which uses the body of the post request. Here’s an example:

public class EchoTask extends PostBodyTask {
public EchoTask() {

super("echo");
}

@Override
public void execute(ImmutableMultimap<String, String> parameters, String postBody,␣

→˓PrintWriter output) throws Exception {
output.write(postBody);
output.flush();

}
}

4.11 Logging

Dropwizard uses Logback for its logging backend. It provides an slf4j implementation, and even routes all java.
util.logging, Log4j, and Apache Commons Logging usage through Logback.

slf4j provides the following logging levels:

ERROR
Error events that might still allow the application to continue running.

WARN
Potentially harmful situations.

INFO
Informational messages that highlight the progress of the application at coarse-grained level.

DEBUG
Fine-grained informational events that are most useful to debug an application.

TRACE
Finer-grained informational events than the DEBUG level.

4.11. Logging 33

http://logback.qos.ch/
http://www.slf4j.org/

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Note: If you don’t want to use Logback, you can exclude it from Dropwizard and use an alternative logging configu-
ration:

• Exclude Logback from the dropwizard-core artifact

<dependency>
<groupId>io.dropwizard</groupId>
<artifactId>dropwizard-core</artifactId>
<version>{$dropwizard.version}</version>
<exclusions>

<exclusion>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>

</exclusion>
<exclusion>

<groupId>ch.qos.logback</groupId>
<artifactId>logback-access</artifactId>

</exclusion>
<exclusion>

<groupId>org.slf4j</groupId>
<artifactId>log4j-over-slf4j</artifactId>

</exclusion>
</exclusions>

</dependency>

• Mark the logging configuration as external in your Dropwizard config

server:
type: simple
applicationContextPath: /application
adminContextPath: /admin
requestLog:
type: external

logging:
type: external

• Disable bootstrapping Logback in your application

public class ExampleApplication extends Application<ExampleConfiguration> {

@Override
protected void bootstrapLogging() {
}

}

34 Chapter 4. Dropwizard Core

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

4.11.1 Log Format

Dropwizard’s log format has a few specific goals:

• Be human readable.

• Be machine parsable.

• Be easy for sleepy ops folks to figure out why things are pear-shaped at 3:30AM using standard UNIXy tools like
tail and grep.

The logging output looks like this:

TRACE [2010-04-06 06:42:35,271] com.example.dw.Thing: Contemplating doing a thing.
DEBUG [2010-04-06 06:42:35,274] com.example.dw.Thing: About to do a thing.
INFO [2010-04-06 06:42:35,274] com.example.dw.Thing: Doing a thing
WARN [2010-04-06 06:42:35,275] com.example.dw.Thing: Doing a thing
ERROR [2010-04-06 06:42:35,275] com.example.dw.Thing: This may get ugly.
! java.lang.RuntimeException: oh noes!
! at com.example.dw.Thing.run(Thing.java:16)
!

A few items of note:

• All timestamps are in UTC and ISO 8601 format.

• You can grep for messages of a specific level really easily:

tail -f dw.log | grep '^WARN'

• You can grep for messages from a specific class or package really easily:

tail -f dw.log | grep 'com.example.dw.Thing'

• You can even pull out full exception stack traces, plus the accompanying log message:

tail -f dw.log | grep -B 1 '^\!'

• The ! prefix does not apply to syslog appenders, as stack traces are sent separately from the main message. In-
stead, t is used (this is the default value of the SyslogAppender that comes with Logback). This can be configured
with the stackTracePrefix option when defining your appender.

4.11.2 Configuration

You can specify a default logger level, override the levels of other loggers in your YAML configuration file, and even
specify appenders for them. The latter form of configuration is preferable, but the former is also acceptable.

Logging settings.
logging:

The default level of all loggers. Can be OFF, ERROR, WARN, INFO, DEBUG, TRACE, or␣
→˓ALL.
level: INFO

Logger-specific levels.
loggers:

(continues on next page)

4.11. Logging 35

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

Overrides the level of com.example.dw.Thing and sets it to DEBUG.
"com.example.dw.Thing": DEBUG

Enables the SQL query log and redirect it to a separate file
"org.hibernate.SQL":
level: DEBUG
This line stops org.hibernate.SQL (or anything under it) from using the root␣

→˓logger
additive: false
appenders:

- type: file
currentLogFilename: ./logs/example-sql.log
archivedLogFilenamePattern: ./logs/example-sql-%d.log.gz
archivedFileCount: 5

4.11.3 Asynchronous Logging

By default, all logging in Dropwizard is asynchronous, even to typically synchronous sinks such as files and the console.
When a slow logger (like file logger on an overloaded disk) is coupled with a high load, Dropwizard will seamlessly
drop events of lower importance (TRACE, DEBUG, INFO) in an attempt to maintain reasonable latency.

Tip: Instead of logging business critical statements under INFO, insert them into a database, durable message queue,
or another mechanism that gives confidence that the request has satisfied business requirements before returning the
response to the client.

This logging behavior can be configured:

• Set discardingThreshold to 0 so that no events are dropped

• At the opposite end, set neverBlock to true so that even WARN and ERROR levels will be discarded from logging
under heavy load

Request access logging has the same logging behavior, and since all request logging is done under INFO, each log
statement has an equal chance of being dropped if the log queue is nearing full.

4.11.4 Console Logging

By default, Dropwizard applications log INFO and higher to STDOUT. You can configure this by editing the logging
section of your YAML configuration file:

logging:
appenders:
- type: console
threshold: WARN
target: stderr

In the above, we’re instead logging only WARN and ERROR messages to the STDERR device.

36 Chapter 4. Dropwizard Core

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

4.11.5 File Logging

Dropwizard can also log to an automatically rotated set of log files. This is the recommended configuration for your
production environment:

logging:

appenders:
- type: file
The file to which current statements will be logged.
currentLogFilename: ./logs/example.log

When the log file rotates, the archived log will be renamed to this and gzipped.␣
→˓The

%d is replaced with the previous day (yyyy-MM-dd). Custom rolling windows can be␣
→˓created

by passing a SimpleDateFormat-compatible format as an argument: "%d{yyyy-MM-dd-
→˓hh}".

archivedLogFilenamePattern: ./logs/example-%d.log.gz

The number of archived files to keep.
archivedFileCount: 5

The timezone used to format dates. HINT: USE THE DEFAULT, UTC.
timeZone: UTC

4.11.6 Syslog Logging

Finally, Dropwizard can also log statements to syslog.

Note: Because Java doesn’t use the native syslog bindings, your syslog server must have an open network socket.

logging:

appenders:
- type: syslog
The hostname of the syslog server to which statements will be sent.
N.B.: If this is the local host, the local syslog instance will need to be␣

→˓configured to
listen on an inet socket, not just a Unix socket.
host: localhost

The syslog facility to which statements will be sent.
facility: local0

You can combine any number of different appenders, including multiple instances of the same appender with different
configurations:

logging:

Permit DEBUG, INFO, WARN and ERROR messages to be logged by appenders.
(continues on next page)

4.11. Logging 37

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

level: DEBUG

appenders:
Log warnings and errors to stderr
- type: console
threshold: WARN
target: stderr

Log info, warnings and errors to our apps' main log.
Rolled over daily and retained for 5 days.
- type: file
threshold: INFO
currentLogFilename: ./logs/example.log
archivedLogFilenamePattern: ./logs/example-%d.log.gz
archivedFileCount: 5

Log debug messages, info, warnings and errors to our apps' debug log.
Rolled over hourly and retained for 6 hours
- type: file
threshold: DEBUG
currentLogFilename: ./logs/debug.log
archivedLogFilenamePattern: ./logs/debug-%d{yyyy-MM-dd-hh}.log.gz
archivedFileCount: 6

4.11.7 JSON Log Format

You may prefer to produce logs in a structured format such as JSON, so it can be processed by analytics or BI software.
For that, add a module to the project for supporting JSON layouts:

<dependency>
<groupId>io.dropwizard</groupId>
<artifactId>dropwizard-json-logging</artifactId>
<version>${dropwizard.version}</version>

</dependency>

Setup the JSON layout in the configuration file.

For general logging:

logging:
appenders:
- type: console
layout:
type: json

The json layout will produces the following log message:

{"timestamp":1515002688000, "level":"INFO","logger":"org.eclipse.jetty.server.Server",
→˓"thread":"main","message":"Started @6505ms"}

For request logging:

38 Chapter 4. Dropwizard Core

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

server:
requestLog:
appenders:

- type: console
layout:
type: access-json

The access-json layout will produces the following log message:

{"timestamp":1515002688000, "method":"GET","uri":"/hello-world", "status":200, "protocol
→˓":"HTTP/1.1","contentLength":37,"remoteAddress":"127.0.0.1","requestTime":5, "userAgent
→˓":"Mozilla/5.0"}

4.11.8 Logging Configuration via HTTP

Active log levels can be changed during the runtime of a Dropwizard application via HTTP using the
LogConfigurationTask. For instance, to configure the log level for a single Logger. The logger parameter may
be repeated. The optional duration parameter must be an ISO 8601 duration format. When the duration elapses the
level will revert to the effective level of the parent logger.:

Configure com.example.helloworld to INFO
curl -X POST -d "logger=com.example.helloworld&level=INFO" http://localhost:8081/tasks/
→˓log-level
Configure com.example.helloworld and com.example.helloearth to INFO
curl -X POST -d "logger=com.example.helloworld&logger=com.example.helloearth&level=INFO"␣
→˓http://localhost:8081/tasks/log-level
Configure com.example.helloworld to INFO, then revert to default level after 10 minutes
curl -X POST -d "logger=com.example.helloworld&level=INFO&duration=PT10M" http://
→˓localhost:8081/tasks/log-level
Revert com.example.helloworld to the default level
curl -X POST -d "logger=com.example.helloworld" http://localhost:8081/tasks/log-level

Note: Chaining log level changes on the same package may have unexpected consequences due to the naive imple-
mentation of a simple FIFO timer.

4.11.9 Logging Filters

Just because a statement has a level of INFO, doesn’t mean it should be logged with other INFO statements. One can
create logging filters that will intercept log statements before they are written and decide if they’re allowed. Log filters
can work on both regular statements and request log statements. The following example will be for request logging as
there are many reasons why certain requests may be excluded from the log:

• Only log requests that have large bodies

• Only log requests that are slow

• Only log requests that resulted in a non-2xx status code

• Exclude requests that contain sensitive information in the URL

• Exclude healthcheck requests

The example will demonstrate excluding /secret requests from the log.

4.11. Logging 39

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

@JsonTypeName("secret-filter-factory")
public class SecretFilterFactory implements FilterFactory<IAccessEvent> {

@Override
public Filter<IAccessEvent> build() {

return new Filter<IAccessEvent>() {
@Override
public FilterReply decide(IAccessEvent event) {

if (event.getRequestURI().equals("/secret")) {
return FilterReply.DENY;

} else {
return FilterReply.NEUTRAL;

}
}

};
}

}

Reference SecretFilterFactory type in our configuration.

server:
requestLog:
appenders:

- type: console
filterFactories:
- type: secret-filter-factory

The last step is to add our class (in this case com.example.SecretFilterFactory) to META-INF/services/io.
dropwizard.logging.filter.FilterFactory in our resources folder.

4.11.10 Filtering Request Logs for a Specific URI

Reference UriFilterFactory type in your configuration.

server:
requestLog:
appenders:

- type: console
filterFactories:
- type: uri
uris:
- "/health-check"

4.12 Testing Applications

All of Dropwizard’s APIs are designed with testability in mind, so even your applications can have unit tests:

public class MyApplicationTest {
private final Environment environment = mock(Environment.class);
private final JerseyEnvironment jersey = mock(JerseyEnvironment.class);
private final MyApplication application = new MyApplication();

(continues on next page)

40 Chapter 4. Dropwizard Core

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

private final MyConfiguration config = new MyConfiguration();

@BeforeEach
public void setup() throws Exception {

config.setMyParam("yay");
when(environment.jersey()).thenReturn(jersey);

}

@Test
public void buildsAThingResource() throws Exception {

application.run(config, environment);

verify(jersey).register(isA(ThingResource.class));
}

}

We highly recommend Mockito for all your mocking needs.

4.13 Banners

We think applications should print out a big ASCII art banner on startup. Yours should, too. It’s fun. Just add a
banner.txt class to src/main/resources and it’ll print it out when your application starts:

INFO [2011-12-09 21:56:37,209] io.dropwizard.cli.ServerCommand: Starting hello-world
dP
88

.d8888b. dP. .dP .d8888b. 88d8b.d8b. 88d888b. 88 .d8888b.
88ooood8 `8bd8' 88' `88 88'`88'`88 88' `88 88 88ooood8
88.d88b. 88. .88 88 88 88 88. .88 88 88. ...
`88888P' dP' `dP `88888P8 dP dP dP 88Y888P' dP `88888P'

88
dP

INFO [2011-12-09 21:56:37,214] org.eclipse.jetty.server.Server: jetty-7.6.0
...

We could probably make up an argument about why this is a serious devops best practice with high ROI and an Agile
Tool, but honestly we just enjoy this.

We recommend you use TAAG for all your ASCII art banner needs.

4.14 Resources

Unsurprisingly, most of your day-to-day work with a Dropwizard application will be in the resource classes, which
model the resources exposed in your RESTful API. Dropwizard uses Jersey for this, so most of this section is just
re-hashing or collecting various bits of Jersey documentation.

Jersey is a framework for mapping various aspects of incoming HTTP requests to POJOs and then mapping various
aspects of POJOs to outgoing HTTP responses. Here’s a basic resource class:

4.13. Banners 41

https://site.mockito.org/
http://patorjk.com/software/taag/
http://jersey.github.io/

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

@Path("/{user}/notifications")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class NotificationsResource {

private final NotificationStore store;

public NotificationsResource(NotificationStore store) {
this.store = store;

}

@GET
public NotificationList fetch(@PathParam("user") OptionalLong userId,

@QueryParam("count") @DefaultValue("20") OptionalInt␣
→˓count) {

final List<Notification> notifications = store.fetch(userId.get(), count.get());
if (notifications != null) {

return new NotificationList(userId, notifications);
}
throw new WebApplicationException(Status.NOT_FOUND);

}

@POST
public Response add(@PathParam("user") OptionalLong userId,

@NotNull @Valid Notification notification) {
final long id = store.add(userId.get(), notification);
return Response.created(UriBuilder.fromResource(NotificationResource.class)

.build(userId.get(), id))
.build();

}
}

This class provides a resource (a user’s list of notifications) which responds to GET and POST requests to /{user}/
notifications, providing and consuming application/json representations. There’s quite a lot of functionality
on display here, and this section will explain in detail what’s in play and how to use these features in your application.

4.14.1 Paths

Important: Every resource class must have a @Path annotation.

The @Path annotation isn’t just a static string, it’s a URI Template. The {user} part denotes a named variable, and
when the template matches a URI the value of that variable will be accessible via @PathParam-annotated method
parameters.

For example, an incoming request for /1001/notifications would match the URI template, and the value "1001"
would be available as the path parameter named user.

If your application doesn’t have a resource class whose @Path URI template matches the URI of an incoming request,
Jersey will automatically return a 404 Not Found to the client.

42 Chapter 4. Dropwizard Core

http://tools.ietf.org/html/draft-gregorio-uritemplate-07

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

4.14.2 Methods

Methods on a resource class which accept incoming requests are annotated with the HTTP methods they handle: @GET,
@POST, @PUT, @DELETE, @HEAD, @OPTIONS, @PATCH.

Support for arbitrary new methods can be added via the @HttpMethod annotation. They also must be added to the list
of allowed methods. This means, by default, methods such as CONNECT and TRACE are blocked, and will return a 405
Method Not Allowed response.

If a request comes in which matches a resource class’s path but has a method which the class doesn’t support, Jersey
will automatically return a 405 Method Not Allowed to the client.

The return value of the method (in this case, a NotificationList instance) is then mapped to the negotiated media
type. In this case, our resource only supports JSON, and so the NotificationList is serialized to JSON using
Jackson.

4.14.3 Metrics

Every resource method or the class itself can be annotated with @Timed, @Metered, @ResponseMetered and @Ex-
ceptionMetered. If the annotation is placed on the class, it will apply to all its resource methods. Dropwizard augments
Jersey to automatically record runtime information about your resource methods.

public class ExampleApplication extends ResourceConfig {
.
.
.
register(new InstrumentedResourceMethodApplicationListener (new MetricRegistry()));
config = config.register(ExampleResource.class);
.
.
.

}

@Path("/example")
@Produces(MediaType.TEXT_PLAIN)
public class ExampleResource {

@GET
@Timed
public String show() {

return "yay";
}

@GET
@Metered(name = "fancyName") // If name isn't specified, the meter will given the␣

→˓name of the method it decorates.
@Path("/metered")
public String metered() {

return "woo";
}

@GET
@ExceptionMetered(cause = IOException.class) // Default cause is Exception.class
@Path("/exception-metered")
public String exceptionMetered(@QueryParam("splode") @DefaultValue("false") boolean␣

(continues on next page)

4.14. Resources 43

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

→˓splode) throws IOException {
if (splode) {

throw new IOException("AUGH");
}
return "fuh";

}

@GET
@ResponseMetered
@Path("/response-metered")
public Response responseMetered(@QueryParam("invalid") @DefaultValue("false")␣

→˓boolean invalid) {
if (invalid) {

return Response.status(Response.Status.INTERNAL_SERVER_ERROR).build();
}
return Response.ok().build();

}
}

• @Timed measures the duration of requests to a resource

• @Metered measures the rate at which the resource is accessed

• @ResponseMetered measures rate for each class of response codes (1xx/2xx/3xx/4xx/5xx)

• @ExceptionMetered measures how often exceptions occur processing the resource

Important: @Timed and @Metered can only be used on the same resource method at the same time, if their name is
unique, also see the annotation parameter name. Otherwise, the generated metrics names will be identical which will
cause an IllegalArgumentException.

4.14.4 Parameters

The annotated methods on a resource class can accept parameters which are mapped to from aspects of the incoming
request.

For example:

• A @PathParam("user")-annotated String takes the raw value from the user variable in the matched URI
template and passes it into the method as a String.

• A @QueryParam("count")-annotated OptionalInt parameter takes the first count value from the request’s
query string and passes it as a String to OptionalInt’s constructor. OptionalInt parses the string as an
Integer, returning a 400 Bad Request if the value is malformed.

• A @FormParam("name")-annotated Set<String> parameter takes all the name values from a posted form and
passes them to the method as a set of strings.

• A *Param–annotated NonEmptyStringParam will interpret empty strings as absent strings, which is useful in
cases where the endpoint treats empty strings and absent strings as interchangeable.

What’s noteworthy here is that you can actually encapsulate the vast majority of your validation logic using specialized
parameter objects. See AbstractParam for details.

44 Chapter 4. Dropwizard Core

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

4.14.5 Request Entities

If you’re handling request entities (e.g., an application/json object on a PUT request), you can model this as a
parameter without a *Param annotation. In the example code, the add method provides a good example of this:

@POST
public Response add(@PathParam("user") OptionalLong userId,

@NotNull @Valid Notification notification) {
final long id = store.add(userId.get(), notification);
return Response.created(UriBuilder.fromResource(NotificationResource.class)

.build(userId.get(), id))
.build();

}

Jersey maps the request entity to any single, unbound parameter. In this case, because the resource is annotated with
@Consumes(MediaType.APPLICATION_JSON), it uses the Dropwizard-provided Jackson support which, in addition
to parsing the JSON and mapping it to an instance of Notification, also runs that instance through Dropwizard’s
Constraining Entities.

If the deserialized Notification isn’t valid, Dropwizard returns a 422 Unprocessable Entity response to the
client.

Note: If a request entity parameter is just annotated with @Valid, it is still allowed to be null, so to ensure that the
object is present and validated @NotNull @Valid is a powerful combination.

4.14.6 Media Types

Jersey also provides full content negotiation, so if your resource class consumes application/json but the client
sends a text/plain entity, Jersey will automatically reply with a 406 Not Acceptable. Jersey’s even smart enough
to use client-provided q-values in their Accept headers to pick the best response content type based on what both the
client and server will support.

4.14.7 Responses

If your clients are expecting custom headers or additional information (or, if you simply desire an additional degree of
control over your responses), you can return explicitly-built Response objects:

return Response.noContent().language(Locale.GERMAN).build();

In general, though, we recommend you return actual domain objects if at all possible. It makes testing resources much
easier.

4.14. Resources 45

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

4.14.8 Error Handling

Almost as important as an application’s happy path (receiving expected input and returning expected output) is an
application’s behavior when something goes wrong.

If your resource class unintentionally throws an exception, Dropwizard will log that exception under the ERROR level
(including stack traces) and return a terse, safe application/json 500 Internal Server Error response. The
response will contain an ID that can be grepped out the server logs for additional information.

If your resource class needs to return an error to the client (e.g., the requested record doesn’t exist), you have two options:
throw a subclass of Exception or restructure your method to return a Response. If at all possible, prefer throwing
Exception instances to returning Response objects, as that will make resource endpoints more self describing and
easier to test.

The least intrusive way to map error conditions to a response is to throw a WebApplicationException:

@GET
@Path("/{collection}")
public Saying reduceCols(@PathParam("collection") String collection) {

if (!collectionMap.containsKey(collection)) {
final String msg = String.format("Collection %s does not exist", collection);
throw new WebApplicationException(msg, Status.NOT_FOUND)

}

// ...
}

In this example a GET request to /foobar will return

{"code":404,"message":"Collection foobar does not exist"}

One can also take exceptions that your resource may throw and map them to appropriate responses. For instance, an
endpoint may throw IllegalArgumentException and it may be worthy enough of a response to warrant a custom
metric to track how often the event occurs. Here’s an example of such an ExceptionMapper

public class IllegalArgumentExceptionMapper implements ExceptionMapper
→˓<IllegalArgumentException> {
private final Meter exceptions;
public IllegalArgumentExceptionMapper(MetricRegistry metrics) {

exceptions = metrics.meter(name(getClass(), "exceptions"));
}

@Override
public Response toResponse(IllegalArgumentException e) {

exceptions.mark();
return Response.status(Status.BAD_REQUEST)

.header("X-YOU-SILLY", "true")

.type(MediaType.APPLICATION_JSON_TYPE)

.entity(new ErrorMessage(Status.BAD_REQUEST.getStatusCode(),
"You passed an illegal argument!"))

.build();
}

}

and then registering the exception mapper:

46 Chapter 4. Dropwizard Core

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

@Override
public void run(final MyConfiguration conf, final Environment env) {

env.jersey().register(new IllegalArgumentExceptionMapper(env.metrics()));
env.jersey().register(new Resource());

}

Overriding Default Exception Mappers

To override a specific exception mapper, register your own class that implements the same ExceptionMapper<T> as
one of the default. For instance, we can customize responses caused by Jackson exceptions:

public class JsonProcessingExceptionMapper implements ExceptionMapper
→˓<JsonProcessingException> {
@Override
public Response toResponse(JsonProcessingException exception) {

// create the response
}

}

With this method, one doesn’t need to know what the default exception mappers are, as they are overridden if the user
supplies a conflicting mapper. While not preferential, one can also disable all default exception mappers, by setting
server.registerDefaultExceptionMappers to false. See the class ExceptionMapperBinder for a list of the
default exception mappers.

4.14.9 URIs

While Jersey doesn’t quite have first-class support for hyperlink-driven applications, the provided UriBuilder func-
tionality does quite well.

Rather than duplicate resource URIs, it’s possible (and recommended!) to initialize a UriBuilder with the path from
the resource class itself:

UriBuilder.fromResource(UserResource.class).build(user.getId());

4.14.10 Testing

As with just about everything in Dropwizard, we recommend you design your resources to be testable. Dependencies
which aren’t request-injected should be passed in via the constructor and assigned to final fields.

Testing, then, consists of creating an instance of your resource class and passing it a mock. (Again: Mockito.)

public class NotificationsResourceTest {
private final NotificationStore store = mock(NotificationStore.class);
private final NotificationsResource resource = new NotificationsResource(store);

@Test
public void getsReturnNotifications() {

final List<Notification> notifications = mock(List.class);
when(store.fetch(1, 20)).thenReturn(notifications);

final NotificationList list = resource.fetch(new LongParam("1"), new IntParam("20
(continues on next page)

4.14. Resources 47

https://site.mockito.org/

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

→˓"));

assertThat(list.getUserId(),
is(1L));

assertThat(list.getNotifications(),
is(notifications));

}
}

4.14.11 Caching

Adding a Cache-Control statement to your resource class is simple with Dropwizard:

@GET
@CacheControl(maxAge = 6, maxAgeUnit = TimeUnit.HOURS)
public String getCachableValue() {

return "yay";
}

The @CacheControl annotation will take all of the parameters of the Cache-Control header.

4.14.12 Sessions

Although Dropwizard’s main purpose is to build stateless RESTful APIs, a stateful web service can be built using HTTP
sessions. As most users won’t profit from having session support enabled by default, session support is implemented
as opt-in.

The underlying Jetty server will handle sessions only if a SessionHandler is provided at application startup. Therefore
the following code has to be added to the run method of the Application class:

@Override
public void run(final TestConfiguration configuration, final Environment environment) {

environment.servlets().setSessionHandler(new org.eclipse.jetty.server.session.
→˓SessionHandler());
}

This will provide Jetty’s default SessionHandler to the servlet environment and session support is enabled. To get
an HttpSession object injected into a Jersey resource method, Dropwizard provides a @Session annotation:

public Response doSomethingWithSessions(@Session HttpSession httpSession) {
return Response.ok().build();

}

48 Chapter 4. Dropwizard Core

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

4.15 Representations

Representation classes are classes which, when handled to various Jersey MessageBodyReader and
MessageBodyWriter providers, become the entities in your application’s API. Dropwizard heavily favors JSON, but
it’s possible to map from any POJO to custom formats and back.

4.15.1 Basic JSON

Jackson is awesome at converting regular POJOs to JSON and back. This file:

public class Notification {
private String text;

public Notification(String text) {
this.text = text;

}

@JsonProperty
public String getText() {

return text;
}

@JsonProperty
public void setText(String text) {

this.text = text;
}

}

gets converted into this JSON:

{
"text": "hey it's the value of the text field"

}

If, at some point, you need to change the JSON field name or the Java field without affecting the other, you can add an
explicit field name to the @JsonProperty annotation.

If you prefer immutable objects rather than JavaBeans, that’s also doable:

public class Notification {
private final String text;

@JsonCreator
public Notification(@JsonProperty("text") String text) {

this.text = text;
}

@JsonProperty("text")
public String getText() {

return text;
}

}

4.15. Representations 49

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

4.15.2 Advanced JSON

Not all JSON representations map nicely to the objects your application deals with, so it’s sometimes necessary to use
custom serializers and deserializers. Just annotate your object like this:

@JsonSerialize(using=FunkySerializer.class)
@JsonDeserialize(using=FunkyDeserializer.class)
public class Funky {

// ...
}

Then make a FunkySerializer class which implements JsonSerializer<Funky> and a FunkyDeserializer
class which implements JsonDeserializer<Funky>.

Snake Case

A common issue with JSON is the disagreement between camelCase and snake_case field names. Java and Javascript
folks tend to like camelCase; Ruby, Python, and Perl folks insist on snake_case. To make Dropwizard automatically
convert field names to snake_case (and back), just annotate the class with @JsonSnakeCase:

@JsonSnakeCase
public class Person {

private final String firstName;

@JsonCreator
public Person(@JsonProperty String firstName) {

this.firstName = firstName;
}

@JsonProperty
public String getFirstName() {

return firstName;
}

}

This gets converted into this JSON:

{
"first_name": "Coda"

}

Unknown properties

If the name of a JSON property cannot be mapped to a Java property (or otherwise handled), that JSON property will
simply be ignored.

You can change this behavior by configuring Dropwizard’s object mapper:

public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {
bootstrap.getObjectMapper().enable(DeserializationFeature.FAIL_ON_UNKNOWN_

→˓PROPERTIES);
}

50 Chapter 4. Dropwizard Core

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Note: The YAML configuration parser will fail on unknown properties regardless of the object mapper configuration.

4.15.3 Streaming Output

If your application happens to return lots of information, you may get a big performance and efficiency bump by using
streaming output. By returning an object which implements Jersey’s StreamingOutput interface, your method can
stream the response entity in a chunk-encoded output stream. Otherwise, you’ll need to fully construct your return
value and then hand it off to be sent to the client.

4.15.4 HTML Representations

For generating HTML pages, check out Dropwizard’s views support.

4.15.5 Custom Representations

Sometimes, though, you’ve got some wacky output format you need to produce or consume and no amount of ar-
guing will make JSON acceptable. That’s unfortunate but OK. You can add support for arbitrary input and output
formats by creating classes which implement Jersey’s MessageBodyReader<T> and MessageBodyWriter<T> inter-
faces. (Make sure they’re annotated with @Provider and @Produces("text/gibberish") or @Consumes("text/
gibberish").) Once you’re done, just add instances of them (or their classes if they depend on Jersey’s @Context
injection) to your application’s Environment on initialization.

4.15.6 Jersey filters

There might be cases when you want to filter out requests or modify them before they reach your Resources. Jersey has a
rich api for filters and interceptors that can be used directly in Dropwizard. You can stop the request from reaching your
resources by throwing a WebApplicationException. Alternatively, you can use filters to modify inbound requests
or outbound responses.

@Provider
public class DateNotSpecifiedFilter implements ContainerRequestFilter {

@Override
public void filter(ContainerRequestContext requestContext) throws IOException {

String dateHeader = requestContext.getHeaderString(HttpHeaders.DATE);

if (dateHeader == null) {
Exception cause = new IllegalArgumentException("Date Header was not specified

→˓");
throw new WebApplicationException(cause, Response.Status.BAD_REQUEST);

}
}

}

This example filter checks the request for the “Date” header, and denies the request if was missing. Otherwise, the
request is passed through.

Filters can be dynamically bound to resource methods using DynamicFeature:

4.15. Representations 51

https://eclipse-ee4j.github.io/jersey.github.io/documentation/latest/filters-and-interceptors.html
https://docs.oracle.com/javaee/7/api/javax/ws/rs/container/DynamicFeature.html

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

@Provider
public class DateRequiredFeature implements DynamicFeature {

@Override
public void configure(ResourceInfo resourceInfo, FeatureContext context) {

if (resourceInfo.getResourceMethod().getAnnotation(DateRequired.class) != null) {
context.register(DateNotSpecifiedFilter.class);

}
}

}

The DynamicFeature is invoked by the Jersey runtime when the application is started. In this example, the feature
checks for methods that are annotated with @DateRequired and registers the DateNotSpecified filter on those
methods only.

You typically register the feature in your Application class, like so:

environment.jersey().register(DateRequiredFeature.class);

4.15.7 Servlet filters

Another way to create filters is by creating servlet filters. They offer a way to register filters that apply both to servlet
requests as well as resource requests. Jetty comes with a few bundled filters which may already suit your needs. If you
want to create your own filter, this example demonstrates a servlet filter analogous to the previous example:

public class DateNotSpecifiedServletFilter implements javax.servlet.Filter {
// Other methods in interface omitted for brevity

@Override
public void doFilter(ServletRequest request, ServletResponse response, FilterChain␣

→˓chain) throws IOException, ServletException {
if (request instanceof HttpServletRequest) {

String dateHeader = ((HttpServletRequest) request).getHeader(HttpHeaders.
→˓DATE);

if (dateHeader != null) {
chain.doFilter(request, response); // This signals that the request␣

→˓should pass this filter
} else {

HttpServletResponse httpResponse = (HttpServletResponse) response;
httpResponse.setStatus(HttpStatus.BAD_REQUEST_400);
httpResponse.getWriter().print("Date Header was not specified");

}
}

}
}

This servlet filter can then be registered in your Application class by wrapping it in FilterHolder and adding it to
the application context together with a specification for which paths this filter will be active. Here’s an example:

environment.servlets().addFilter("DateNotSpecifiedServletFilter", new␣
→˓DateNotSpecifiedServletFilter())

.addMappingForUrlPatterns(EnumSet.of(DispatcherType.REQUEST), true,
→˓ "/*");

52 Chapter 4. Dropwizard Core

http://www.eclipse.org/jetty/documentation/current/advanced-extras.html

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

4.16 How it’s glued together

When your application starts up, it will spin up a Jetty HTTP server, see DefaultServerFactory. This server will
have two handlers, one for your application port and the other for your admin port. The admin handler creates and
registers the AdminServlet. This has a handle to all of the application healthchecks and metrics via the ServletContext.

The application port has an HttpServlet as well, this is composed of DropwizardResourceConfig, which
is an extension of Jersey’s resource configuration that performs scanning to find root resource and provider
classes. Ultimately when you call env.jersey().register(new SomeResource()), you are adding to the
DropwizardResourceConfig. This config is a jersey Application, so all of your application resources are served
from one Servlet

DropwizardResourceConfig is where the various ResourceMethodDispatchAdapter are registered to enable the fol-
lowing functionality:

• Resource method requests with @Timed, @Metered, @ExceptionMetered are delegated to special dispatchers
which decorate the metric telemetry

• Resources that return Optional are unboxed. Present returns underlying type, and non-present 404s

• Resource methods that are annotated with @CacheControl are delegated to a special dispatcher that decorates
on the cache control headers

• Enables using Jackson to parse request entities into objects and generate response entities from objects, all while
performing validation

4.16. How it’s glued together 53

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

54 Chapter 4. Dropwizard Core

CHAPTER

FIVE

DROPWIZARD DEPENDENCY INJECTION

Dropwizard provides you with simple dependency injection mechanism, using HK2, out-of-the-box,
and you can add support for more advanced DI by using Guice bundle.

5.1 Dependency Injection Using HK2

The underlying library for out-of-the-box dependency injection mechanism in Dropwizard is Eclipse’s HK2, a CDI-
compliant dependency injection framework.

To create a dependency injection configuration that can be overriden during test execution for mocking purposes, put
it into your app Configuration for bundle to consume:

public interface DependencyInjectionConfiguration {
List<Class<?>> getSingletons();
List<NamedProperty<? extends Object>> getNamedProperties();

}

public class NamedProperty<T> {
private final String id;
private final T value;
private final Class<T> clazz;

@JsonCreator
public NamedProperty(@JsonProperty("id") String id, @JsonProperty("value") T value,␣

→˓@JsonProperty("clazz") Class<T> clazz) {
this.id = id;
this.value = value;
this.clazz = clazz;

}

public String getId() {
return id;

}

public T getValue() {
return value;

}

public Class<T> getClazz() {
return clazz;

}
(continues on next page)

55

https://github.com/eclipse-ee4j/glassfish-hk2

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

}

public class ExampleConfiguration extends Configuration implements␣
→˓DependencyInjectionConfiguration {

protected Class<?> getUserRepository() {
return UserRepository.class;

}

@Override
public List<Class<?>> getSingletons() {

final List<Class<?>> result = new ArrayList();
result.add(getUserRepository());
result.add(UserResource.class);

return result;
}

@Override
public List<NamedProperty<? extends Object>> getNamedProperties() {

final List<NamedProperty<? extends Object>> result = new ArrayList<>();
result.add(new NamedProperty<>("dbUser", "dummy_db_user", String.class));

return result;
}

}

Then implement a bundle for DI:

public class DependencyInjectionBundle implements ConfiguredBundle
→˓<DependencyInjectionConfiguration> {

@Override
public void run(DependencyInjectionConfiguration configuration, Environment␣

→˓environment) throws Exception {
environment

.jersey()

.register(
new AbstractBinder() {

@Override
protected void configure() {

for (Class<?> singletonClass : configuration.
→˓getSingletons()) {

bindAsContract(singletonClass).in(Singleton.class);
}

for (NamedProperty<? extends Object> namedProperty :␣
→˓configuration.getNamedProperties()) {

bind((Object) namedProperty.getValue()).to((Class<Object>
→˓) namedProperty.getClazz()).named(namedProperty.getId());

}
}

(continues on next page)

56 Chapter 5. Dropwizard Dependency Injection

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

}
);

}
}

Then, in your application’s run method, create a new DependencyInjectionBundle:

@Override
public void run(ExampleConfiguration config,

Environment environment) {
final DependencyInjectionBundle dependencyInjectionBundle = new␣

→˓DependencyInjectionBundle();
dependencyInjectionBundle.run(configuration, environment);

}

This allows you to use CDI annotations to control your dependency injection:

@Singleton
public class UserResource {

private final UserRepository userRepository;

@Inject
public UserResource(UserRepository userRepository) {

this.userRepository = userRepository;
}

}

@Singleton
public class UserRepository {

private final String dbUser;

@Inject
public UserRepository(@Named("dbUser") String dbUser) {

this.dbUser = dbUser;
}

}

Then you can provide alternate configuration for testing purposes:

public class TestConfiguration extends ExampleConfiguration {

@Override
protected Class<?> getUserRepository() {

return MockUserRepository.class;
}

}

@DisplayName("User endpoint")
@ExtendWith(DropwizardExtensionsSupport.class)
public class UserControllerTests {

public static final DropwizardAppExtension<TestConfiguration> app = new␣
→˓DropwizardAppExtension<>(ExampleApplication.class, new TestConfiguration());
}

5.1. Dependency Injection Using HK2 57

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Note: the @Singleton annotation is only effective for Dropwizard resources. For custom classes, don’t forget to
register them as shown above with bindAsContract(singletonClass).in(Singleton.class).

58 Chapter 5. Dropwizard Dependency Injection

CHAPTER

SIX

DROPWIZARD CLIENT

The dropwizard-client module provides you with two different performant, instrumented HTTP
clients so you can integrate your service with other web services: Apache HttpClient and Jersey
Client.

6.1 Apache HttpClient

The underlying library for dropwizard-client is Apache’s HttpClient, a full-featured, well-tested HTTP client li-
brary.

To create a managed, instrumented HttpClient instance, your configuration class needs an http client configuration
instance:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
private HttpClientConfiguration httpClient = new HttpClientConfiguration();

@JsonProperty("httpClient")
public HttpClientConfiguration getHttpClientConfiguration() {

return httpClient;
}

@JsonProperty("httpClient")
public void setHttpClientConfiguration(HttpClientConfiguration httpClient) {

this.httpClient = httpClient;
}

}

Then, in your application’s run method, create a new HttpClientBuilder:

@Override
public void run(ExampleConfiguration config,

Environment environment) {
final HttpClient httpClient = new HttpClientBuilder(environment).using(config.

→˓getHttpClientConfiguration())
.build(getName());

environment.jersey().register(new ExternalServiceResource(httpClient));
}

59

https://hc.apache.org/httpcomponents-client-4.5.x/index.html

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

6.1.1 Metrics

Dropwizard’s HttpClientBuilder actually gives you an instrumented subclass which tracks the following pieces of
data:

org.apache.http.conn.ClientConnectionManager.available-connections
The number of idle connections ready to be used to execute requests.

org.apache.http.conn.ClientConnectionManager.leased-connections
The number of persistent connections currently being used to execute requests.

org.apache.http.conn.ClientConnectionManager.max-connections
The maximum number of allowed connections.

org.apache.http.conn.ClientConnectionManager.pending-connections
The number of connection requests being blocked awaiting a free connection.

org.apache.http.client.HttpClient.get-requests
The rate at which GET requests are being sent.

org.apache.http.client.HttpClient.post-requests
The rate at which POST requests are being sent.

org.apache.http.client.HttpClient.head-requests
The rate at which HEAD requests are being sent.

org.apache.http.client.HttpClient.put-requests
The rate at which PUT requests are being sent.

org.apache.http.client.HttpClient.delete-requests
The rate at which DELETE requests are being sent.

org.apache.http.client.HttpClient.options-requests
The rate at which OPTIONS requests are being sent.

org.apache.http.client.HttpClient.trace-requests
The rate at which TRACE requests are being sent.

org.apache.http.client.HttpClient.connect-requests
The rate at which CONNECT requests are being sent.

org.apache.http.client.HttpClient.move-requests
The rate at which MOVE requests are being sent.

org.apache.http.client.HttpClient.patch-requests
The rate at which PATCH requests are being sent.

org.apache.http.client.HttpClient.other-requests
The rate at which requests with none of the above methods are being sent.

Note: The naming strategy for the metrics associated requests is configurable. Specifically, the last part
e.g. get-requests. What is displayed is HttpClientMetricNameStrategies.METHOD_ONLY, you can also in-
clude the host via HttpClientMetricNameStrategies.HOST_AND_METHOD or a url without query string via
HttpClientMetricNameStrategies.QUERYLESS_URL_AND_METHOD

60 Chapter 6. Dropwizard Client

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

6.2 Jersey Client

If HttpClient is too low-level for you, Dropwizard also supports Jersey’s Client API. Jersey’s Client allows you to
use all of the server-side media type support that your service uses to, for example, deserialize application/json
request entities as POJOs.

To create a managed, instrumented JerseyClient instance, your configuration class needs an jersey client configu-
ration instance:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
private JerseyClientConfiguration jerseyClient = new JerseyClientConfiguration();

@JsonProperty("jerseyClient")
public JerseyClientConfiguration getJerseyClientConfiguration() {

return jerseyClient;
}

@JsonProperty("jerseyClient")
public void setJerseyClientConfiguration(JerseyClientConfiguration jerseyClient) {

this.jerseyClient = jerseyClient;
}

}

Then, in your service’s run method, create a new JerseyClientBuilder:

@Override
public void run(ExampleConfiguration config,

Environment environment) {

final Client client = new JerseyClientBuilder(environment).using(config.
→˓getJerseyClientConfiguration())

.build(getName());
environment.jersey().register(new ExternalServiceResource(client));

}

6.2.1 Configuration

The Client that Dropwizard creates deviates from the Jersey Client Configuration defaults. The default, in Jersey, is
for a client to never timeout reading or connecting in a request, while in Dropwizard, the default is 500 milliseconds.

There are a couple of ways to change this behavior. The recommended way is to modify the YAML configuration.
Alternatively, set the properties on the JerseyClientConfiguration, which will take effect for all built clients. On
a per client basis, the configuration can be changed by utilizing the property method and, in this case, the Jersey
Client Properties can be used.

Warning: Do not try to change Jersey properties using Jersey Client Properties through the

withProperty(String propertyName, Object propertyValue)

method on the JerseyClientBuilder, because by default it’s configured by Dropwizard’s HttpClientBuilder,
so the Jersey properties are ignored.

6.2. Jersey Client 61

https://hc.apache.org/httpcomponents-client-4.5.x/index.html
https://eclipse-ee4j.github.io/jersey.github.io/documentation/2.29.1/client.html
https://eclipse-ee4j.github.io/jersey.github.io/apidocs/2.29.1/jersey/org/glassfish/jersey/client/ClientProperties.html
https://eclipse-ee4j.github.io/jersey.github.io/apidocs/2.29.1/jersey/org/glassfish/jersey/client/ClientProperties.html
https://eclipse-ee4j.github.io/jersey.github.io/apidocs/2.29.1/jersey/org/glassfish/jersey/client/ClientProperties.html

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

6.2.2 Rx Usage

To increase the ergonomics of asynchronous client requests, Jersey allows creation of rx-clients. You can instruct
Dropwizard to create such a client:

@Override
public void run(ExampleConfiguration config,

Environment environment) {

final RxClient<RxCompletionStageInvoker> client =
new JerseyClientBuilder(environment)

.using(config.getJerseyClientConfiguration())

.buildRx(getName(), RxCompletionStageInvoker.class);
environment.jersey().register(new ExternalServiceResource(client));

}

RxCompletionStageInvoker.class is the Java 8 implementation and can be added to the pom:

<dependency>
<groupId>org.glassfish.jersey.ext.rx</groupId>
<artifactId>jersey-rx-client-java8</artifactId>

</dependency>

Alternatively, there are RxJava, Guava, and JSR-166e implementations.

By allowing Dropwizard to create the rx-client, the same thread pool that is utilized by traditional synchronous and
asynchronous requests, is used for rx requests.

6.2.3 Proxy Authentication

The client can utilise a forward proxy, supporting both Basic and NTLM authentication schemes. Basic Auth against
a proxy is simple:

proxy:
host: '192.168.52.11'
port: 8080
scheme : 'https'
auth:
username: 'secret'
password: 'stuff'

nonProxyHosts:
- 'localhost'
- '192.168.52.*'
- '*.example.com'

NTLM Auth is configured by setting the relevant windows properties.

proxy:
host: '192.168.52.11'
port: 8080
scheme : 'https'
auth:
username: 'secret'
password: 'stuff'

(continues on next page)

62 Chapter 6. Dropwizard Client

https://eclipse-ee4j.github.io/jersey.github.io/documentation/2.29.1/rx-client.html

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

authScheme: 'NTLM'
realm: 'realm' # optional, defaults to ANY_REALM
hostname: 'workstation' # optional, defaults to null but may be␣

→˓required depending on your AD environment
domain: 'HYPERCOMPUGLOBALMEGANET' # optional, defaults to null but may be␣

→˓required depending on your AD environment
credentialType: 'NT'

nonProxyHosts:
- 'localhost'
- '192.168.52.*'
- '*.example.com'

6.2. Jersey Client 63

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

64 Chapter 6. Dropwizard Client

CHAPTER

SEVEN

DROPWIZARD JDBI3

The dropwizard-jdbi3 module provides you with managed access to JDBI, a flexible and modular
library for interacting with relational databases via SQL.

7.1 Configuration

To create a managed, instrumented Jdbi instance, your configuration class needs a DataSourceFactory instance:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
private DataSourceFactory database = new DataSourceFactory();

@JsonProperty("database")
public void setDataSourceFactory(DataSourceFactory factory) {

this.database = factory;
}

@JsonProperty("database")
public DataSourceFactory getDataSourceFactory() {

return database;
}

}

Then, in your service’s run method, create a new JdbiFactory:

@Override
public void run(ExampleConfiguration config, Environment environment) {

final JdbiFactory factory = new JdbiFactory();
final Jdbi jdbi = factory.build(environment, config.getDataSourceFactory(),

→˓"postgresql");
environment.jersey().register(new UserResource(jdbi));

}

This will create a new managed connection pool to the database, a health check for connectivity to the database, and a
new Jdbi instance for you to use.

Your service’s configuration file will then look like this:

database:
the name of your JDBC driver

(continues on next page)

65

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

driverClass: org.postgresql.Driver

the username
user: pg-user

the password
password: iAMs00perSecrEET

the JDBC URL
url: jdbc:postgresql://db.example.com/db-prod

any properties specific to your JDBC driver:
properties:
charSet: UTF-8

the maximum amount of time to wait on an empty pool before throwing an exception
maxWaitForConnection: 1s

the SQL query to run when validating a connection's liveness
validationQuery: "/* MyService Health Check */ SELECT 1"

the timeout before a connection validation queries fail
validationQueryTimeout: 3s

the minimum number of connections to keep open
minSize: 8

the maximum number of connections to keep open
maxSize: 32

whether or not idle connections should be validated
checkConnectionWhileIdle: false

the amount of time to sleep between runs of the idle connection validation,␣
→˓abandoned cleaner and idle pool resizing
evictionInterval: 10s

the minimum amount of time an connection must sit idle in the pool before it is␣
→˓eligible for eviction
minIdleTime: 1 minute

66 Chapter 7. Dropwizard JDBI3

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

7.2 Plugins

JDBI3 is built using plugins to add features to its core implementation. Dropwizard adds the sqlobject, jodatime, and
guava plugins by default, but you are free to add other existing plugins you might need or create your own.

7.3 Usage

We highly recommend you use JDBI’s SQL Objects API, which allows you to write DAO classes as interfaces:

public interface MyDAO {
@SqlUpdate("create table something (id int primary key, name varchar(100))")
void createSomethingTable();

@SqlUpdate("insert into something (id, name) values (:id, :name)")
void insert(@Bind("id") int id, @Bind("name") String name);

@SqlQuery("select name from something where id = :id")
String findNameById(@Bind("id") int id);

}

final MyDAO dao = database.onDemand(MyDAO.class);

This ensures your DAO classes are trivially mockable, as well as encouraging you to extract mapping code (e.g.,
RowMapper -> domain objects) into testable, reusable classes.

7.4 Exception Handling

By adding the JdbiExceptionsBundle to your application, Dropwizard will automatically unwrap any thrown
SQLException or JdbiException instances. This is critical for debugging, since otherwise only the common wrap-
per exception’s stack trace is logged.

7.5 Prepended Comments

If you’re using JDBI’s SQL Objects API (and you should be), dropwizard-jdbi3will automatically prepend the SQL
object’s class and method name to the SQL query as an SQL comment:

/* com.example.service.dao.UserDAO.findByName */
SELECT id, name, email
FROM users
WHERE name = 'Coda';

This will allow you to quickly determine the origin of any slow or misbehaving queries.

7.2. Plugins 67

http://jdbi.org/#_third_party_integration
http://jdbi.org/#_sql_objects
http://jdbi.org/#_jodatime
http://jdbi.org/#_google_guava
http://jdbi.org/#_sql_objects
http://jdbi.org/#_sql_objects

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

68 Chapter 7. Dropwizard JDBI3

CHAPTER

EIGHT

DROPWIZARD MIGRATIONS

The dropwizard-migrationsmodule provides you with a wrapper for Liquibase database refactoring.

8.1 Configuration

Like Dropwizard JDBI3, your configuration class needs a DataSourceFactory instance:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
private DataSourceFactory database = new DataSourceFactory();

@JsonProperty("database")
public DataSourceFactory getDataSourceFactory() {

return database;
}

}

8.2 Adding The Bundle

Then, in your application’s initialize method, add a new MigrationsBundle subclass:

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {

bootstrap.addBundle(new MigrationsBundle<ExampleConfiguration>() {
@Override
public DataSourceFactory getDataSourceFactory(ExampleConfiguration␣

→˓configuration) {
return configuration.getDataSourceFactory();

}
});

}

69

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

8.3 Defining Migrations

Your database migrations are stored in your Dropwizard project, in src/main/resources/migrations.xml. This
file will be packaged with your application, allowing you to run migrations using your application’s command-line
interface. You can change the name of the migrations file used by overriding the getMigrationsFileName() method
in MigrationsBundle.

For example, to create a new people table, you might create an initial migrations.xml like this:

<?xml version="1.0" encoding="UTF-8"?>

<databaseChangeLog
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.1.xsd">

<changeSet id="1" author="codahale">
<createTable tableName="people">

<column name="id" type="bigint" autoIncrement="true">
<constraints primaryKey="true" nullable="false"/>

</column>
<column name="fullName" type="varchar(255)">

<constraints nullable="false"/>
</column>
<column name="jobTitle" type="varchar(255)"/>

</createTable>
</changeSet>

</databaseChangeLog>

For more information on available database refactorings, check the Liquibase documentation.

8.4 Checking Your Database’s State

To check the state of your database, use the db status command:

java -jar hello-world.jar db status helloworld.yml

8.5 Dumping Your Schema

If your database already has an existing schema and you’d like to pre-seed your migrations.xml document, you can
run the db dump command:

java -jar hello-world.jar db dump helloworld.yml

This will output a Liquibase change log with a changeset capable of recreating your database.

70 Chapter 8. Dropwizard Migrations

http://www.liquibase.org
http://www.liquibase.org

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

8.6 Tagging Your Schema

To tag your schema at a particular point in time (e.g., to make rolling back easier), use the db tag command:

java -jar hello-world.jar db tag helloworld.yml 2012-10-08-pre-user-move

8.7 Migrating Your Schema

To apply pending changesets to your database schema, run the db migrate command:

java -jar hello-world.jar db migrate helloworld.yml

Warning: This will potentially make irreversible changes to your database. Always check the pending DDL scripts
by using the --dry-run flag first. This will output the SQL to be run to stdout.

Note: To apply only a specific number of pending changesets, use the --count flag.

8.8 Rolling Back Your Schema

To roll back changesets which have already been applied, run the db rollback command. You will need to specify
either a tag, a date, or a number of changesets to roll back to:

java -jar hello-world.jar db rollback helloworld.yml --tag 2012-10-08-pre-user-move

Warning: This will potentially make irreversible changes to your database. Always check the pending DDL scripts
by using the --dry-run flag first. This will output the SQL to be run to stdout.

8.9 Testing Migrations

To verify that a set of pending changesets can be fully rolled back, use the db test command, which will migrate
forward, roll back to the original state, then migrate forward again:

java -jar hello-world.jar db test helloworld.yml

Warning: Do not run this in production, for obvious reasons.

8.6. Tagging Your Schema 71

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

8.10 Preparing A Rollback Script

To prepare a rollback script for pending changesets before they have been applied, use the db prepare-rollback
command:

java -jar hello-world.jar db prepare-rollback helloworld.yml

This will output a DDL script to stdout capable of rolling back all unapplied changesets.

8.11 Generating Documentation

To generate HTML documentation on the current status of the database, use the db generate-docs command:

java -jar hello-world.jar db generate-docs helloworld.yml ~/db-docs/

8.12 Dropping All Objects

To drop all objects in the database, use the db drop-all command:

java -jar hello-world.jar db drop-all --confirm-delete-everything helloworld.yml

Warning: You need to specify the --confirm-delete-everything flag because this command deletes every-
thing in the database. Be sure you want to do that first.

8.13 Fast-Forwarding Through A Changeset

To mark a pending changeset as applied (e.g., after having backfilled your migrations.xml with db dump), use the
db fast-forward command:

java -jar hello-world.jar db fast-forward helloworld.yml

This will mark the next pending changeset as applied. You can also use the --all flag to mark all pending changesets
as applied.

8.14 Support For Adding Multiple Migration Bundles

Assuming migrations need to be done for two different databases, you would need to have two different data source
factories:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
private DataSourceFactory database1 = new DataSourceFactory();

(continues on next page)

72 Chapter 8. Dropwizard Migrations

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

@Valid
@NotNull
private DataSourceFactory database2 = new DataSourceFactory();

@JsonProperty("database1")
public DataSourceFactory getDb1DataSourceFactory() {

return database1;
}

@JsonProperty("database2")
public DataSourceFactory getDb2DataSourceFactory() {

return database2;
}

}

Now multiple migration bundles can be added with unique names like so:

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {

bootstrap.addBundle(new MigrationsBundle<ExampleConfiguration>() {
@Override
public DataSourceFactory getDataSourceFactory(ExampleConfiguration␣

→˓configuration) {
return configuration.getDb1DataSourceFactory();

}

@Override
public String name() {

return "db1";
}

});

bootstrap.addBundle(new MigrationsBundle<ExampleConfiguration>() {
@Override
public DataSourceFactory getDataSourceFactory(ExampleConfiguration␣

→˓configuration) {
return configuration.getDb2DataSourceFactory();

}

@Override
public String name() {

return "db2";
}

});
}

To migrate your schema:

java -jar hello-world.jar db1 migrate helloworld.yml

and

8.14. Support For Adding Multiple Migration Bundles 73

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

java -jar hello-world.jar db2 migrate helloworld.yml

Note: Whenever a name is added to a migration bundle, it becomes the command that needs to be run at the command
line. eg: To check the state of your database, use the status command:

java -jar hello-world.jar db1 status helloworld.yml

or

java -jar hello-world.jar db2 status helloworld.yml

By default the migration bundle uses the “db” command. By overriding you can customize it to provide any name you
want and have multiple migration bundles. Wherever the “db” command was being used, this custom name can be
used.

There will also be a need to provide different change log migration files as well. This can be done as

java -jar hello-world.jar db1 migrate helloworld.yml --migrations <path_to_db1_
→˓migrations.xml>

java -jar hello-world.jar db2 migrate helloworld.yml --migrations <path_to_db2_
→˓migrations.xml>

8.15 More Information

If you are using databases supporting multiple schemas like PostgreSQL, Oracle, or H2, you can use the optional
--catalog and --schema arguments to specify the database catalog and schema used for the Liquibase commands.

For more information on available commands, either use the db --help command, or for more detailed help on a
specific command, use db <cmd> --help.

74 Chapter 8. Dropwizard Migrations

CHAPTER

NINE

DROPWIZARD HIBERNATE

The dropwizard-hibernate module provides you with managed access to Hibernate, a powerful,
industry-standard object-relation mapper (ORM).

9.1 Configuration

To create a managed, instrumented SessionFactory instance, your configuration class needs a DataSourceFactory
instance:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
private DataSourceFactory database = new DataSourceFactory();

@JsonProperty("database")
public DataSourceFactory getDataSourceFactory() {

return database;
}

@JsonProperty("database")
public void setDataSourceFactory(DataSourceFactory dataSourceFactory) {

this.database = dataSourceFactory;
}

}

Then, add a HibernateBundle instance to your application class, specifying your entity classes and how to get a
DataSourceFactory from your configuration subclass:

private final HibernateBundle<ExampleConfiguration> hibernate = new HibernateBundle
→˓<ExampleConfiguration>(Person.class) {
@Override
public DataSourceFactory getDataSourceFactory(ExampleConfiguration configuration) {

return configuration.getDataSourceFactory();
}

};

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {

bootstrap.addBundle(hibernate);
}

(continues on next page)

75

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

@Override
public void run(ExampleConfiguration config, Environment environment) {

final PersonDAO dao = new PersonDAO(hibernate.getSessionFactory());
environment.jersey().register(new UserResource(dao));

}

This will create a new managed connection pool to the database, a health check for connectivity to the database, and a
new SessionFactory instance for you to use in your DAO classes.

Your application’s configuration file will then look like this:

database:
the name of your JDBC driver
driverClass: org.postgresql.Driver

the username
user: pg-user

the password
password: iAMs00perSecrEET

the JDBC URL
url: jdbc:postgresql://db.example.com/db-prod

any properties specific to your JDBC driver:
properties:
charSet: UTF-8
hibernate.dialect: org.hibernate.dialect.PostgreSQLDialect

the maximum amount of time to wait on an empty pool before throwing an exception
maxWaitForConnection: 1s

the SQL query to run when validating a connection's liveness
validationQuery: "/* MyApplication Health Check */ SELECT 1"

the minimum number of connections to keep open
minSize: 8

the maximum number of connections to keep open
maxSize: 32

whether or not idle connections should be validated
checkConnectionWhileIdle: false

76 Chapter 9. Dropwizard Hibernate

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

9.2 Usage

9.2.1 Data Access Objects

Dropwizard comes with AbstractDAO, a minimal template for entity-specific DAO classes. It contains type-safe
wrappers for SessionFactory’s common operations:

public class PersonDAO extends AbstractDAO<Person> {
public PersonDAO(SessionFactory factory) {

super(factory);
}

public Person findById(Long id) {
return get(id);

}

public long create(Person person) {
return persist(person).getId();

}

public List<Person> findAll() {
return list(namedTypedQuery("com.example.helloworld.core.Person.findAll"));

}
}

9.2.2 Transactional Resource Methods

Dropwizard uses a declarative method of scoping transactional boundaries. Not all resource methods actually require
database access, so the @UnitOfWork annotation is provided:

@GET
@Path("/{id}")
@Timed
@UnitOfWork
public Person findPerson(@PathParam("id") LongParam id) {

return dao.findById(id.get());
}

This will automatically open a session, begin a transaction, call findById, commit the transaction, and finally close
the session. If an exception is thrown, the transaction is rolled back.

Important: The Hibernate session is closed before your resource method’s return value (e.g., the Person from the
database), which means your resource method (or DAO) is responsible for initializing all lazily-loaded collections, etc.,
before returning. Otherwise, you’ll get a LazyInitializationException thrown in your template (or null values
produced by Jackson).

9.2. Usage 77

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

9.2.3 Transactional Resource Methods Outside Jersey Resources

Currently creating transactions with the @UnitOfWork annotation works out-of-box only for resources managed by
Jersey. If you want to use it outside Jersey resources, e.g. in authenticators, you should instantiate your class with
UnitOfWorkAwareProxyFactory.

SessionDao dao = new SessionDao(hibernateBundle.getSessionFactory());
ExampleAuthenticator exampleAuthenticator = new␣
→˓UnitOfWorkAwareProxyFactory(hibernateBundle)

.create(ExampleAuthenticator.class, SessionDao.class, dao);

It will create a proxy of your class, which will open a Hibernate session with a transaction around methods with the
@UnitOfWork annotation.

9.3 Prepended Comments

Dropwizard automatically configures Hibernate to prepend a comment describing the context of all queries:

/* load com.example.helloworld.core.Person */
select

person0_.id as id0_0_,
person0_.fullName as fullName0_0_,
person0_.jobTitle as jobTitle0_0_

from people person0_
where person0_.id=?

This will allow you to quickly determine the origin of any slow or misbehaving queries.

78 Chapter 9. Dropwizard Hibernate

CHAPTER

TEN

DROPWIZARD AUTHENTICATION

The dropwizard-auth client provides authentication using either HTTP Basic Authentication or
OAuth2 bearer tokens.

10.1 Authenticators

An authenticator is a strategy class which, given a set of client-provided credentials, possibly returns a principal (i.e.,
the person or entity on behalf of whom your service will do something).

Authenticators implement the Authenticator<C, P extends Principal> interface, which has a single method:

public class ExampleAuthenticator implements Authenticator<BasicCredentials, User> {
@Override
public Optional<User> authenticate(BasicCredentials credentials) throws␣

→˓AuthenticationException {
if ("secret".equals(credentials.getPassword())) {

return Optional.of(new User(credentials.getUsername()));
}
return Optional.empty();

}
}

This authenticator takes basic auth credentials and if the client-provided password is secret, authenticates the client
as a User with the client-provided username.

If the password doesn’t match, an absent Optional is returned instead, indicating that the credentials are invalid.

Warning: It’s important for authentication services not to provide too much information in their errors. The
fact that a username or email has an account may be meaningful to an attacker, so the Authenticator inter-
face doesn’t allow you to distinguish between a bad username and a bad password. You should only throw an
AuthenticationException if the authenticator is unable to check the credentials (e.g., your database is down).

79

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

10.1.1 Caching

Because the backing data stores for authenticators may not handle high throughput (an RDBMS or LDAP server, for
example), Dropwizard provides a decorator class which provides caching:

SimpleAuthenticator simpleAuthenticator = new SimpleAuthenticator();
CachingAuthenticator<BasicCredentials, User> cachingAuthenticator = new␣
→˓CachingAuthenticator<>(

metricRegistry, simpleAuthenticator,
config.getAuthenticationCachePolicy());

Dropwizard can parse Caffeine’s CaffeineSpec from the configuration policy, allowing your configuration file to look
like this:

authenticationCachePolicy: maximumSize=10000, expireAfterAccess=10m

This caches up to 10,000 principals, evicting stale entries after 10 minutes.

10.2 Authorizer

An authorizer is a strategy class which, given a principal and a role, decides if access is granted to the principal.

The authorizer implements the Authorizer<P extends Principal> interface, which has a single method:

public class ExampleAuthorizer implements Authorizer<User> {
@Override
public boolean authorize(User user, String role) {

return user.getName().equals("good-guy") && role.equals("ADMIN");
}

}

10.3 Basic Authentication

The AuthDynamicFeature with the BasicCredentialAuthFilter and RolesAllowedDynamicFeature enables
HTTP Basic authentication and authorization; requires an authenticator which takes instances of BasicCredentials.
If you don’t use authorization, then RolesAllowedDynamicFeature is not required.

@Override
public void run(ExampleConfiguration configuration,

Environment environment) {
environment.jersey().register(new AuthDynamicFeature(

new BasicCredentialAuthFilter.Builder<User>()
.setAuthenticator(new ExampleAuthenticator())
.setAuthorizer(new ExampleAuthorizer())
.setRealm("SUPER SECRET STUFF")
.buildAuthFilter()));

environment.jersey().register(RolesAllowedDynamicFeature.class);
//If you want to use @Auth to inject a custom Principal type into your resource
environment.jersey().register(new AuthValueFactoryProvider.Binder<>(User.class));

}

80 Chapter 10. Dropwizard Authentication

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

10.4 OAuth2

The AuthDynamicFeature with OAuthCredentialAuthFilter and RolesAllowedDynamicFeature enables
OAuth2 bearer-token authentication and authorization; requires an authenticator which takes instances of String.
If you don’t use authorization, then RolesAllowedDynamicFeature is not required.

@Override
public void run(ExampleConfiguration configuration,

Environment environment) {
environment.jersey().register(new AuthDynamicFeature(

new OAuthCredentialAuthFilter.Builder<User>()
.setAuthenticator(new ExampleOAuthAuthenticator())
.setAuthorizer(new ExampleAuthorizer())
.setPrefix("Bearer")
.buildAuthFilter()));

environment.jersey().register(RolesAllowedDynamicFeature.class);
//If you want to use @Auth to inject a custom Principal type into your resource
environment.jersey().register(new AuthValueFactoryProvider.Binder<>(User.class));

}

10.5 Chained Factories

The ChainedAuthFilter enables usage of various authentication factories at the same time.

@Override
public void run(ExampleConfiguration configuration,

Environment environment) {
AuthFilter basicCredentialAuthFilter = new BasicCredentialAuthFilter.Builder<>()

.setAuthenticator(new ExampleBasicAuthenticator())

.setAuthorizer(new ExampleAuthorizer())

.setPrefix("Basic")

.buildAuthFilter();

AuthFilter oauthCredentialAuthFilter = new OAuthCredentialAuthFilter.Builder<>()
.setAuthenticator(new ExampleOAuthAuthenticator())
.setAuthorizer(new ExampleAuthorizer())
.setPrefix("Bearer")
.buildAuthFilter();

List<AuthFilter> filters = Lists.newArrayList(basicCredentialAuthFilter,␣
→˓oauthCredentialAuthFilter);

environment.jersey().register(new AuthDynamicFeature(new␣
→˓ChainedAuthFilter(filters)));

environment.jersey().register(RolesAllowedDynamicFeature.class);
//If you want to use @Auth to inject a custom Principal type into your resource
environment.jersey().register(new AuthValueFactoryProvider.Binder<>(User.class));

}

For this to work properly, all chained factories must produce the same type of principal, here User.

10.4. OAuth2 81

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

10.6 Protecting Resources

There are two ways to protect a resource. You can mark your resource method with one of the following annotations:

• @PermitAll. All authenticated users will have access to the method.

• @RolesAllowed. Access will be granted to the users with the specified roles.

• @DenyAll. No access will be granted to anyone.

Note: You can use @RolesAllowed, @PermitAll on the class level. Method annotations take precedence over the
class ones.

Alternatively, you can annotate the parameter representing your principal with @Auth. Note you must register a jersey
provider to make this work.

environment.jersey().register(new AuthValueFactoryProvider.Binder<>(User.class));

@RolesAllowed("ADMIN")
@GET
public SecretPlan getSecretPlan(@Auth User user) {

return dao.findPlanForUser(user);
}

You can also access the Principal by adding a parameter to your method @Context SecurityContext context.
Note this will not automatically register the servlet filter which performs authentication. You will still need to add one
of @PermitAll, @RolesAllowed, or @DenyAll. This is not the case with @Auth. When that is present, the auth filter
is automatically registered to facilitate users upgrading from older versions of Dropwizard

@RolesAllowed("ADMIN")
@GET
public SecretPlan getSecretPlan(@Context SecurityContext context) {

User userPrincipal = (User) context.getUserPrincipal();
return dao.findPlanForUser(user);

}

If there are no provided credentials for the request, or if the credentials are invalid, the provider will return a scheme-
appropriate 401 Unauthorized response without calling your resource method.

10.6.1 Optional protection

Resource methods can be _optionally_ protected by representing the principal as an Optional. In such cases, the
Optional resource method argument will be populated with the principal, if present. Otherwise, the argument will be
Optional.empty.

For instance, say you have an endpoint that should display a logged-in user’s name, but return an anonymous reply
for unauthenticated requests. You need to implement a custom filter which injects a security context containing the
principal if it exists, without performing authentication.

@GET
public String getGreeting(@Auth Optional<User> userOpt) {

if (userOpt.isPresent()) {
return "Hello, " + userOpt.get().getName() + "!";

(continues on next page)

82 Chapter 10. Dropwizard Authentication

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

} else {
return "Greetings, anonymous visitor!"

}
}

For optionally-protected resources, requests with invalid auth will be treated the same as those with no provided auth
credentials. That is to say, requests that _fail_ to meet an authenticator or authorizer’s requirements result in an empty
principal being passed to the resource method.

10.7 Testing Protected Resources

Add this dependency into your pom.xml file:

<dependencies>
<dependency>
<groupId>io.dropwizard</groupId>
<artifactId>dropwizard-testing</artifactId>
<version>${dropwizard.version}</version>

</dependency>
<dependency>
<groupId>org.glassfish.jersey.test-framework.providers</groupId>
<artifactId>jersey-test-framework-provider-grizzly2</artifactId>
<version>${jersey.version}</version>
<exclusions>
<exclusion>
<groupId>javax.servlet</groupId>
<artifactId>javax.servlet-api</artifactId>

</exclusion>
<exclusion>
<groupId>junit</groupId>
<artifactId>junit</artifactId>

</exclusion>
</exclusions>

</dependency>
</dependencies>

10.7.1 OAuth Example

When you build your ResourceExtension, add the GrizzlyWebTestContainerFactory line.

@ExtendWith(DropwizardExtensionsSupport.class)
public class OAuthResourceTest {

public ResourceExtension resourceExtension = ResourceExtension
.builder()
.setTestContainerFactory(new GrizzlyWebTestContainerFactory())
.addProvider(new AuthDynamicFeature(new OAuthCredentialAuthFilter.Builder

→˓<User>()
.setAuthenticator(new MyOAuthAuthenticator())

(continues on next page)

10.7. Testing Protected Resources 83

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

.setAuthorizer(new MyAuthorizer())

.setRealm("SUPER SECRET STUFF")

.setPrefix("Bearer")

.buildAuthFilter()))
.addProvider(RolesAllowedDynamicFeature.class)
.addProvider(new AuthValueFactoryProvider.Binder<>(User.class))
.addResource(new ProtectedResource())
.build();

}

Note that you need to set the token header manually.

@Test
public void testProtected() throws Exception {

final Response response = resourceExtension.target("/protected")
.request(MediaType.APPLICATION_JSON_TYPE)
.header("Authorization", "Bearer TOKEN")
.get();

assertThat(response.getStatus()).isEqualTo(200);
}

10.7.2 BasicAuth Example

When you build your ResourceExtension, add the GrizzlyWebTestContainerFactory line.

@ExtendWith(DropwizardExtensionsSupport.class)
public class OAuthResourceTest {

public ResourceExtension resourceExtension = ResourceExtension
.builder()
.setTestContainerFactory(new GrizzlyWebTestContainerFactory())
.addProvider(new AuthDynamicFeature(new BasicCredentialAuthFilter.Builder

→˓<User>()
.setAuthenticator(new MyBasicAuthenticator())
.setAuthorizer(new MyBasicAuthorizer())
.buildAuthFilter()))

.addProvider(RolesAllowedDynamicFeature.class)

.addProvider(new AuthValueFactoryProvider.Binder<>(User.class))

.addResource(new ProtectedResource())

.build()
}

Note that you need to set the authorization header manually.

@Test
public void testProtectedResource(){

String credential = "Basic " + Base64.getEncoder().encodeToString("test@gmail.
→˓com:secret".getBytes())

Response response = resourceExtension
(continues on next page)

84 Chapter 10. Dropwizard Authentication

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

.target("/protected")

.request()

.header(HttpHeaders.AUTHORIZATION, credential)

.get();

Assert.assertEquals(200, response.getStatus());
}

10.8 Multiple Principals and Authenticators

In some cases you may want to use different authenticators/authentication schemes for different resources. For example
you may want Basic authentication for one resource and OAuth for another resource, at the same time using a different
Principal for each authentication scheme.

For this use case, there is the PolymorphicAuthDynamicFeature and the
PolymorphicAuthValueFactoryProvider. With these two components, we can use different combinations
of authentication schemes/authenticators/authorizers/principals. To use this feature, we need to do a few things:

• Register the PolymorphicAuthDynamicFeature with a map that maps principal types to authentication filters.

• Register the PolymorphicAuthValueFactoryProvider with a set of principal classes that you will be using.

• Annotate your resource method Principal parameters with @Auth.

As an example, the following code configures both OAuth and Basic authentication, using a different principal for each.

final AuthFilter<BasicCredentials, BasicPrincipal> basicFilter
= new BasicCredentialAuthFilter.Builder<BasicPrincipal>()

.setAuthenticator(new ExampleAuthenticator())

.setRealm("SUPER SECRET STUFF")

.buildAuthFilter());
final AuthFilter<String, OAuthPrincipal> oauthFilter

= new OAuthCredentialAuthFilter.Builder<OAuthPrincipal>()
.setAuthenticator(new ExampleOAuthAuthenticator())
.setPrefix("Bearer")
.buildAuthFilter());

final PolymorphicAuthDynamicFeature feature = new PolymorphicAuthDynamicFeature<>(
ImmutableMap.of(

BasicPrincipal.class, basicFilter,
OAuthPrincipal.class, oauthFilter));

final AbstractBinder binder = new PolymorphicAuthValueFactoryProvider.Binder<>(
ImmutableSet.of(BasicPrincipal.class, OAuthPrincipal.class));

environment.jersey().register(feature);
environment.jersey().register(binder);

Now we are able to do something like the following

@GET
public Response basicAuthResource(@Auth BasicPrincipal principal) {}

(continues on next page)

10.8. Multiple Principals and Authenticators 85

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

@GET
public Response oauthResource(@Auth OAuthPrincipal principal) {}

The first resource method will use Basic authentication while the second one will use OAuth.

Note that with the above example, only authentication is configured. If you also want authorization, the following steps
will need to be taken.

• Register the RolesAllowedDynamicFeature with the application.

• Make sure you add Authorizers when you build your AuthFilters.

• Make sure any custom AuthFilter you add has the @Priority(Priorities.AUTHENTICATION) annotation
set (otherwise authorization will be tested before the request’s security context is properly set and will fail).

• Annotate the resource method with the authorization annotation. Unlike the note earlier in this document that
says authorization annotations are allowed on classes, with this poly feature, currently that is not supported. The
annotation MUST go on the resource method

So continuing with the previous example you should add the following configurations

... = new BasicCredentialAuthFilter.Builder<BasicPrincipal>()
.setAuthorizer(new ExampleAuthorizer()).. // set authorizer

... = new OAuthCredentialAuthFilter.Builder<OAuthPrincipal>()
.setAuthorizer(new ExampleAuthorizer()).. // set authorizer

environment.jersey().register(RolesAllowedDynamicFeature.class);

Now we can do

@GET
@RolesAllowed({ "ADMIN" })
public Response baseAuthResource(@Auth BasicPrincipal principal) {}

@GET
@RolesAllowed({ "ADMIN" })
public Response oauthResource(@Auth OAuthPrincipal principal) {}

Note: The polymorphic auth feature SHOULD NOT be used with any other AuthDynamicFeature. Doing so may
have undesired effects.

86 Chapter 10. Dropwizard Authentication

CHAPTER

ELEVEN

DROPWIZARD FORMS

The dropwizard-forms module provides you with a support for multi-part forms via Jersey.

11.1 Adding The Bundle

Then, in your application’s initialize method, add a new MultiPartBundle subclass:

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {

bootstrap.addBundle(new MultiPartBundle());
}

11.2 Testing

To test resources that utilize multi-part form features, one must add MultiPartFeature.class to the
ResourceExtension as a provider, and register it on the client like the following:

@ExtendWith(DropwizardExtensionsSupport.class)
public class MultiPartTest {

public static final ResourceExtension resourceExtension = ResourceExtension.builder()
.addProvider(MultiPartFeature.class)
.addResource(new TestResource())
.build();

@Test
public void testClientMultipart() {

final FormDataMultiPart multiPart = new FormDataMultiPart()
.field("test-data", "Hello Multipart");

final String response = resourceExtension.target("/test")
.register(MultiPartFeature.class)
.request()
.post(Entity.entity(multiPart, multiPart.getMediaType()), String.class);

assertThat(response).isEqualTo("Hello Multipart");
}

@Path("test")
public static class TestResource {

(continues on next page)

87

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

@POST
@Consumes(MediaType.MULTIPART_FORM_DATA)
public String post(@FormDataParam("test-data") String testData) {

return testData;
}

}
}

11.3 More Information

For additional and more detailed documentation about the Jersey multi-part support, please refer to the documentation
in the Jersey User Guide and Javadoc.

88 Chapter 11. Dropwizard Forms

https://jersey.github.io/documentation/latest/media.html#multipart
https://jersey.github.io/apidocs/latest/jersey/org/glassfish/jersey/media/multipart/package-summary.html

CHAPTER

TWELVE

DROPWIZARD VALIDATION

Dropwizard comes with a host of validation tools out of the box to allow endpoints to return meaning-
ful error messages when constraints are violated. Hibernate Validator is packaged with Dropwizard,
so what can be done in Hibernate Validator, can be done with Dropwizard.

12.1 Validations

Almost anything can be validated on resource endpoints. To give a quick example, the following endpoint doesn’t allow
a null or empty name query parameter.

@GET
public String find(@QueryParam("name") @NotEmpty String arg) {

// ...
}

If a client sends an empty or nonexistent name query param, Dropwizard will respond with a 400 Bad Request code
with the error: query param name may not be empty.

Additionally, annotations such as HeaderParam, CookieParam, FormParam, etc, can be constrained with violations
giving descriptive errors and 400 status codes.

12.1.1 Constraining Entities

If we’re accepting client-provided Person, we probably want to ensure that the name field of the object isn’t null or
blank in the request. We can do this as follows:

public class Person {

@NotEmpty // ensure that name isn't null or blank
private final String name;

@JsonCreator
public Person(@JsonProperty("name") String name) {

this.name = name;
}

@JsonProperty("name")
public String getName() {

return name;
}

}

89

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Then, in our resource class, we can add the @Valid annotation to the Person annotation:

@PUT
public Person replace(@NotNull @Valid Person person) {

// ...
}

If the name field is missing, Dropwizard will return a 422 Unprocessable Entity response detailing the validation
errors: name may not be empty

Note: You don’t need @Valid when the type you are validating can be validated directly (int, String, Integer). If
a class has fields that need validating, then instances of the class must be marked @Valid. For more information, see
the Hibernate Validator documentation on Object graphs and Cascaded validation.

Since our entity is also annotated with @NotNull, Dropwizard will also guard against null input with a response
stating that the body must not be null.

12.1.2 Constraints on optional types

If an entity, field, or parameter is not strictly required, it can be wrapped in an Optional<T>, but the wrapped value
can still be constrained by setting the annotation parameter payload = Unwrapping.Unwrap.class. If the optional
container is empty, then the constraints are not applied.

Numeric optional types, such as OptionalDouble, OptionalInt, and OptionalLong do not require explicit un-
wrapping.

Note: Be careful when using constraints with validation annotations on Optional<String> parameters as there is
a subtle, but important distinction between null and empty. If a client requests bar?q=, the query parameter q will
evaluate to Optional.of(""). If you want q to evaluate to Optional.empty() in this situation, change the type to
NonEmptyStringParam.

Note: Parameter types such as IntParam and NonEmptyStringParam can also be constrained.

There is a caveat regarding payload = Unwrapping.Unwrap.class and *Param types, as there still are some cum-
bersome situations when constraints need to be applied to the container and the value.

@POST
// The @NotNull is supposed to mean that the parameter is required but the Max(3) is␣
→˓supposed to
// apply to the contained integer. Currently, this code will fail saying that Max can't
// be applied on an IntParam
public List<Person> createNum(@QueryParam("num")

@NotNull(payload = Unwrapping.Unwrap.class)
@Max(value = 3, payload = Unwrapping.Unwrap.class)␣

→˓IntParam num) {
// ...

}

@GET
// Similarly, the underlying validation framework can't unwrap nested types (an integer␣

(continues on next page)

90 Chapter 12. Dropwizard Validation

https://docs.jboss.org/hibernate/validator/6.0/reference/en-US/html_single/#section-object-graph-validation
https://docs.jboss.org/hibernate/validator/6.0/reference/en-US/html_single/#example-cascaded-validation

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

→˓wrapped
// in an IntParam wrapped in an Optional), regardless if `Unwrapping.Unwrap.class` is used
public Person retrieve(@QueryParam("num") @Max(3) Optional<IntParam> num) {

// ...
}

To work around these limitations, if the parameter is required check for it in the endpoint and throw an exception, else
use @DefaultValue or move the Optional<T> into the endpoint.

@POST
// Workaround to handle required int params and validations
public List<Person> createNum(@QueryParam("num") @Max(3) IntParam num) {

if (num == null) {
throw new BadRequestException("query param num must not be null");

}
// ...

}

@GET
// Workaround to handle optional int params and validations with DefaultValue
public Person retrieve(@QueryParam("num") @DefaultValue("0") @Max(3) IntParam num) {

// ...
}

@GET
// Workaround to handle optional int params and validations with Optional
public Person retrieve2(@QueryParam("num") @Max(3) IntParam num) {

Optional.fromNullable(num);
// ...

}

12.1.3 Enum Constraints

Given the following enum:

public enum Choice {
OptionA,
OptionB,
OptionC

}

And the endpoint:

@GET
public String getEnum(@NotNull @QueryParam("choice") Choice choice) {

return choice.toString();
}

One can expect Dropwizard not only to ensure that the query parameter exists, but to also provide the client a list of valid
options query param choice must be one of [OptionA, OptionB, OptionC] when an invalid parameter is
provided. The enum that the query parameter is deserialized into is first attempted on the enum’s name() field and

12.1. Validations 91

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

then toString(). During the case insensitive comparisons, the query parameter has whitespace removed with dashes
and dots normalized to underscores. This logic is also used when deserializing request body’s that contain enums.

12.1.4 Return Value Validations

It’s reasonable to want to make guarantees to clients regarding the server response. For example, you may want to
assert that no response will ever be null, and if an endpoint creates a Person that the person is valid.

@POST
@NotNull
@Valid
public Person create() {

return new Person(null);
}

In this instance, instead of returning someone with a null name, Dropwizard will return an HTTP 500 Internal
Server Error with the error server response name may not be empty, so the client knows the server failed
through no fault of their own.

Analogous to an empty request body, an empty entity annotated with @NotNull will return server response may
not be null

Warning: Be careful when using return value constraints when endpoints satisfy all of the following:

• Function name starts with get

• No arguments

• The return value has validation constraints

If an endpoint satisfies these conditions, whenever a request is processed by the resource that endpoint will be
additionally invoked. To give a concrete example:

@Path("/")
public class ValidatedResource {

private AtomicLong counter = new AtomicLong();

@GET
@Path("/foo")
@NotEmpty
public String getFoo() {

counter.getAndIncrement();
return "";

}

@GET
@Path("/bar")
public String getBar() {

return "";
}

}

If a /foo is requested then counter will have increment by 2, and if /bar is requested then counter
will increment by 1. It is our hope that such endpoints are few, far between, and documented thoroughly.

92 Chapter 12. Dropwizard Validation

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

12.2 Limitations

Jersey allows for BeanParam to have setters with *Param annotations. While nice for simple transformations it does
obstruct validation, so clients won’t receive as instructive of error messages. The following example shows the behavior:

@Path("/root")
@Produces(MediaType.APPLICATION_JSON)
public class Resource {

@GET
@Path("params")
public String getBean(@Valid @BeanParam MyBeanParams params) {

return params.getField();
}

public static class MyBeanParams {
@NotEmpty
private String field;

public String getField() {
return field;

}

@QueryParam("foo")
public void setField(String field) {

this.field = Strings.nullToEmpty(field).trim();
}

}
}

A client submitting the query parameter foo as blank will receive the following error message:

{"errors":["getBean.arg0.field may not be empty"]}

Workarounds include:

• Name BeanParam fields the same as the *Param annotation values

• Supply validation message on annotation: @NotEmpty(message = "query param foo must not be
empty")

• Perform transformations and validations on *Param inside endpoint

The same kind of limitation applies for Configuration objects:

public class MyConfiguration extends Configuration {
@NotNull
@JsonProperty("foo")
private String baz;

}

Even though the property’s name is foo, the error when property is null will be:

* baz may not be null

12.2. Limitations 93

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

12.3 Annotations

In addition to the annotations defined in Hibernate Validator, Dropwizard contains another set of annotations, which
are briefly shown below.

public class Person {
@NotEmpty
private final String name;

@NotEmpty
@OneOf(value = {"m", "f"}, ignoreCase = true, ignoreWhitespace = true)
// @OneOf forces a value to value within certain values.
private final String gender;

@Min(value = 0, payload = Unwrapping.Unwrap.class)
@Max(value = 10, payload = Unwrapping.Unwrap.class)
// The integer contained, if present, can attain a min value of 0 and a max of 10.
private final Optional<Integer> animals;

@JsonCreator
public Person(@JsonProperty("name") String name) {

this.name = name;
}

@JsonProperty("name")
public String getName() {

return name;
}

// Method that must return true for the object to be valid
@ValidationMethod(message="name may not be Coda")
@JsonIgnore
public boolean isNotCoda() {

return !"Coda".equals(name);
}

}

The reason why Dropwizard defines @ValidationMethod is that more complex validations (for example, cross-field
comparisons) are often hard to do using declarative annotations. Adding @ValidationMethod to any boolean-
returning method which begins with is is a short and simple workaround:

Note: Due to the rather daft JavaBeans conventions, when using @ValidationMethod, the method must begin with
is (e.g., #isValidPortRange(). This is a limitation of Hibernate Validator, not Dropwizard.

94 Chapter 12. Dropwizard Validation

https://docs.jboss.org/hibernate/validator/6.0/reference/en-US/html_single/#section-builtin-constraints

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

12.3.1 Validating Grouped Constraints with @Validated

The @Validated annotation allows for validation groups to be specifically set, instead of the default group. This is
useful when different endpoints share the same entity but may have different validation requirements.

Going back to our favorite Person class. Let’s say in the initial version of our API, name has to be non-empty, but
realized that business requirements changed and a name can’t be longer than 5 letters. Instead of switching out the API
from unsuspecting clients, we can accept both versions of the API but at different endpoints.

// We're going to create a group of validations for each version of our API
public interface Version1Checks { }

// Our second version will extend Hibernate Validator Default class so that any␣
→˓validation
// annotation without an explicit group will also be validated with this version
public interface Version2Checks extends Default { }

public class Person {
@NotEmpty(groups = Version1Checks.class)
@Length(max = 5, groups = Version2Checks.class)
private String name;

@JsonCreator
public Person(@JsonProperty("name") String name) {

this.name = name;
}

@JsonProperty
public String getName() {

return name;
}

}

@Path("/person")
@Produces(MediaType.APPLICATION_JSON)
public class PersonResource {

// For the v1 endpoint, we'll validate with the version1 class, so we'll need to␣
→˓change the
// group of the NotNull annotation from the default of Default.class to␣

→˓Version1Checks.class
@POST
@Path("/v1")
public void createPersonV1(

@NotNull(groups = Version1Checks.class)
@Valid
@Validated(Version1Checks.class)
Person person

) {
// implementation ...

}

// For the v2 endpoint, we'll validate with version1 and version2, which implicitly
// adds in the Default.class.

(continues on next page)

12.3. Annotations 95

https://docs.jboss.org/hibernate/validator/6.0/reference/en-US/html_single/#chapter-groups

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

@POST
@Path("/v2")
public void createPersonV2(

@NotNull
@Valid
@Validated({Version1Checks.class, Version2Checks.class})
Person person

) {
// implementation ...

}
}

Now when clients hit /person/v1 the Person entity will be checked by all the constraints that are a part of the
Version1Checks group. If /person/v2 is hit, then all validations are performed.

Warning: If the Version1Checks group wasn’t set for the @NotNull annotation for the v1 endpoint, the annotation
would not have had any effect and a null pointer exception would have occurred when a property of a person is
accessed. Dropwizard tries to protect against this class of bug by disallowing multiple @Validated annotations on
an endpoint that contain different groups.

12.4 Testing

It is critical to test the constraints so that you can ensure the assumptions about the data hold and see what kinds of error
messages clients will receive for bad input. The recommended way for testing annotations is through Testing Resources,
as Dropwizard does a bit of magic behind the scenes when a constraint violation occurs to set the response’s status code
and ensure that the error messages are user friendly.

@Test
public void personNeedsAName() {

// Tests what happens when a person with a null name is sent to
// the endpoint.
final Response post = resources.target("/person/v1").request()

.post(Entity.json(new Person(null)));

// Clients will receive a 422 on bad request entity
assertThat(post.getStatus()).isEqualTo(422);

// Check to make sure that errors are correct and human readable
ValidationErrorMessage msg = post.readEntity(ValidationErrorMessage.class);
assertThat(msg.getErrors())

.containsOnly("name may not be empty");
}

96 Chapter 12. Dropwizard Validation

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

12.5 Extending

While Dropwizard provides good defaults for validation error messages, one can customize the response through an
ExceptionMapper<JerseyViolationException>:

/** Return a generic response depending on if it is a client or server error */
public class MyJerseyViolationExceptionMapper implements ExceptionMapper
→˓<JerseyViolationException> {
@Override
public Response toResponse(final JerseyViolationException exception) {

final Set<ConstraintViolation<?>> violations = exception.
→˓getConstraintViolations();

final Invocable invocable = exception.getInvocable();
final int status = ConstraintMessage.determineStatus(violations, invocable);
return Response.status(status)

.type(MediaType.TEXT_PLAIN_TYPE)

.entity(status >= 500 ? "Server error" : "Client error")

.build();
}

}

To register MyJerseyViolationExceptionMapper and have it override the default:

@Override
public void run(final MyConfiguration conf, final Environment env) {

env.jersey().register(new MyJerseyViolationExceptionMapper());
env.jersey().register(new Resource());

}

Dropwizard calculates the validation error message through ConstraintMessage.getMessage.

If you need to validate entities outside of resource endpoints, the validator can be accessed in the Environment when
the application is first ran.

Validator validator = environment.getValidator();
Set<ConstraintViolation> errors = validator.validate(/* instance of class */)

12.5. Extending 97

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

98 Chapter 12. Dropwizard Validation

CHAPTER

THIRTEEN

DROPWIZARD VIEWS

The dropwizard-views-mustache & dropwizard-views-freemarker modules provide you with simple,
fast HTML views using either FreeMarker or Mustache.

To enable views for your Application, add the ViewBundle in the initialize method of your Application class:

public void initialize(Bootstrap<MyConfiguration> bootstrap) {
bootstrap.addBundle(new ViewBundle<MyConfiguration>());

}

You can pass configuration through to view renderers by overriding getViewConfiguration:

public void initialize(Bootstrap<MyConfiguration> bootstrap) {
bootstrap.addBundle(new ViewBundle<MyConfiguration>() {

@Override
public Map<String, Map<String, String>> getViewConfiguration(MyConfiguration␣

→˓config) {
return config.getViewRendererConfiguration();

}
});

}

The returned map should have, for each renderer (such as freemarker or mustache), a Map<String, String> de-
scribing how to configure the renderer. Specific keys and their meanings can be found in the FreeMarker and Mustache
documentation:

views:
freemarker:
strict_syntax: true

mustache:
cache: false

Then, in your resource method, add a View class:

public class PersonView extends View {
private final Person person;

public PersonView(Person person) {
super("person.ftl");
this.person = person;

}

(continues on next page)

99

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

public Person getPerson() {
return person;

}
}

person.ftl is the path of the template relative to the class name. If this class was com.example.service.
PersonView, Dropwizard would then look for the file src/main/resources/com/example/service/person.
ftl.

If your template path contains .ftl, .ftlh, or .ftlx, it’ll be interpreted as a FreeMarker template. If it contains
.mustache, it’ll be interpreted as a Mustache template.

Tip: Dropwizard Freemarker Views also support localized template files. It picks up the client’s locale from their
Accept-Language, so you can add a French template in person_fr.ftl or a Canadian template in person_en_CA.
ftl.

Your template file might look something like this:

<#-- @ftlvariable name="" type="com.example.views.PersonView" -->
<html>

<body>
<!-- calls getPerson().getName() and sanitizes it -->
<h1>Hello, ${person.name?html}!</h1>

</body>
</html>

The @ftlvariable lets FreeMarker (and any FreeMarker IDE plugins you may be using) know that the root object is
a com.example.views.PersonView instance. If you attempt to call a property which doesn’t exist on PersonView
– getConnectionPool(), for example – it will flag that line in your IDE.

Once you have your view and template, you can simply return an instance of your View subclass:

@Path("/people/{id}")
@Produces(MediaType.TEXT_HTML)
public class PersonResource {

private final PersonDAO dao;

public PersonResource(PersonDAO dao) {
this.dao = dao;

}

@GET
public PersonView getPerson(@PathParam("id") String id) {

return new PersonView(dao.find(id));
}

}

Tip: Jackson can also serialize your views, allowing you to serve both text/html and application/json with a
single representation class.

For more information on how to use FreeMarker, see the FreeMarker documentation.

100 Chapter 13. Dropwizard Views

https://freemarker.apache.org/
https://freemarker.apache.org/
https://freemarker.apache.org/

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

For more information on how to use Mustache, see the Mustache and Mustache.java documentation.

13.1 Template Errors

By default, if there is an error with the template (eg. the template file is not found or there is a compilation error with
the template), the user will receive a 500 Internal Server Error with a generic HTML message. The exact error
will logged under error mode.

To customize the behavior, create an exception mapper that will override the default one by looking for
ViewRenderException:

env.jersey().register(new ExtendedExceptionMapper<WebApplicationException>() {
@Override
public Response toResponse(WebApplicationException exception) {

// Return a response here
}

@Override
public boolean isMappable(WebApplicationException e) {

return ExceptionUtils.indexOfThrowable(e, ViewRenderException.class) != -1;
}

});

As an example, to return a 404 instead of a internal server error when one’s mustache templates can’t be found:

env.jersey().register(new ExtendedExceptionMapper<WebApplicationException>() {
@Override
public Response toResponse(WebApplicationException exception) {

return Response.status(Response.Status.NOT_FOUND).build();
}

@Override
public boolean isMappable(WebApplicationException e) {

return Throwables.getRootCause(e).getClass() == MustacheNotFoundException.class;
}

});

13.2 Caching

By default templates are cached to improve loading time. If you want to disable it during the development mode, set
the cache property to false in the view configuration.

views:
.mustache:
cache: false

13.1. Template Errors 101

http://mustache.github.com/mustache.5.html
https://github.com/spullara/mustache.java

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

13.3 Custom Error Pages

To get HTML error pages that fit in with your application, you can use a custom error view. Create a View that takes
an ErrorMessage parameter in its constructor, and hook it up by registering a instance of ErrorEntityWriter.

env.jersey().register(new ErrorEntityWriter<ErrorMessage,View>(MediaType.TEXT_HTML_TYPE,␣
→˓View.class) {
@Override
protected View getRepresentation(ErrorMessage errorMessage) {

return new ErrorView(errorMessage);
}

});

For validation error messages, you’ll need to register another ErrorEntityWriter that handles
ValidationErrorMessage objects.

env.jersey().register(new ErrorEntityWriter<ValidationErrorMessage,View>(MediaType.TEXT_
→˓HTML_TYPE, View.class) {
@Override
protected View getRepresentation(ValidationErrorMessage message) {

return new ValidationErrorView(message);
}

});

102 Chapter 13. Dropwizard Views

CHAPTER

FOURTEEN

DROPWIZARD & SCALA

The dropwizard-scala module is now maintained and documented elsewhere.

The metrics-scala module is maintained here.

103

https://github.com/erikvanoosten/metrics-scala

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

104 Chapter 14. Dropwizard & Scala

CHAPTER

FIFTEEN

TESTING DROPWIZARD

The dropwizard-testing module provides you with some handy classes for testing your represen-
tation classes and resource classes. It also provides an extension for JUnit 5.x and a rule for JUnit
4.x.

15.1 Testing Representations

While Jackson’s JSON support is powerful and fairly easy-to-use, you shouldn’t just rely on eyeballing your represen-
tation classes to ensure you’re producing the API you think you are. By using the helper methods in FixtureHelpers,
you can add unit tests for serializing and deserializing your representation classes to and from JSON.

Let’s assume we have a Person class which your API uses as both a request entity (e.g., when writing via a PUT request)
and a response entity (e.g., when reading via a GET request):

public class Person {
private String name;
private String email;

private Person() {
// Jackson deserialization

}

public Person(String name, String email) {
this.name = name;
this.email = email;

}

@JsonProperty
public String getName() {

return name;
}

@JsonProperty
public void setName(String name) {

this.name = name;
}

@JsonProperty
public String getEmail() {

return email;
}

(continues on next page)

105

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

@JsonProperty
public void setEmail(String email) {

this.email = email;
}

// hashCode
// equals
// toString etc.

}

15.1.1 Fixtures

First, write out the exact JSON representation of a Person in the src/test/resources/fixtures directory of your
Dropwizard project as person.json:

{
"name": "Luther Blissett",
"email": "lb@example.com"

}

15.1.2 Testing Serialization

Next, write a test for serializing a Person instance to JSON:

import static io.dropwizard.testing.FixtureHelpers.*;
import static org.assertj.core.api.Assertions.assertThat;
import io.dropwizard.jackson.Jackson;
import org.junit.jupiter.api.Test;
import com.fasterxml.jackson.databind.ObjectMapper;

public class PersonTest {

private static final ObjectMapper MAPPER = Jackson.newObjectMapper();

@Test
public void serializesToJSON() throws Exception {

final Person person = new Person("Luther Blissett", "lb@example.com");

final String expected = MAPPER.writeValueAsString(
MAPPER.readValue(fixture("fixtures/person.json"), Person.class));

assertThat(MAPPER.writeValueAsString(person)).isEqualTo(expected);
}

}

This test uses AssertJ assertions and JUnit to test that when a Person instance is serialized via Jackson it matches the
JSON in the fixture file. (The comparison is done on a normalized JSON string representation, so formatting doesn’t
affect the results.)

106 Chapter 15. Testing Dropwizard

https://assertj.github.io/doc/#assertj-core-assertions-guide
http://www.junit.org/

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

15.1.3 Testing Deserialization

Next, write a test for deserializing a Person instance from JSON:

import static io.dropwizard.testing.FixtureHelpers.*;
import static org.assertj.core.api.Assertions.assertThat;
import io.dropwizard.jackson.Jackson;
import org.junit.jupiter.api.Test;
import com.fasterxml.jackson.databind.ObjectMapper;

public class PersonTest {

private static final ObjectMapper MAPPER = Jackson.newObjectMapper();

@Test
public void deserializesFromJSON() throws Exception {

final Person person = new Person("Luther Blissett", "lb@example.com");
assertThat(MAPPER.readValue(fixture("fixtures/person.json"), Person.class))

.isEqualTo(person);
}

}

This test uses AssertJ assertions and JUnit to test that when a Person instance is deserialized via Jackson from the
specified JSON fixture it matches the given object.

15.2 Testing Resources

While many resource classes can be tested just by calling the methods on the class in a test, some resources lend
themselves to a more full-stack approach. For these, use ResourceExtension, which loads a given resource instance
in an in-memory Jersey server:

import io.dropwizard.testing.junit5.DropwizardExtensionsSupport;
import io.dropwizard.testing.junit5.ResourceExtension;
import org.junit.jupiter.api.*;
import javax.ws.rs.core.Response;
import java.util.Optional;
import static org.assertj.core.api.Assertions.assertThat;
import static org.mockito.Mockito.*;

@ExtendWith(DropwizardExtensionsSupport.class)
class PersonResourceTest {

private static final PersonDAO DAO = mock(PersonDAO.class);
private static final ResourceExtension EXT = ResourceExtension.builder()

.addResource(new PersonResource(DAO))

.build();
private Person person;

@BeforeEach
void setup() {

person = new Person();
person.setId(1L);

}
(continues on next page)

15.2. Testing Resources 107

https://assertj.github.io/doc/#assertj-core-assertions-guide
http://www.junit.org/

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

@AfterEach
void tearDown() {

reset(DAO);
}

@Test
void getPersonSuccess() {

when(DAO.findById(1L)).thenReturn(Optional.of(person));

Person found = EXT.target("/people/1").request().get(Person.class);

assertThat(found.getId()).isEqualTo(person.getId());
verify(DAO).findById(1L);

}

@Test
void getPersonNotFound() {

when(DAO.findById(2L)).thenReturn(Optional.empty());
final Response response = EXT.target("/people/2").request().get();

assertThat(response.getStatusInfo().getStatusCode()).isEqualTo(Response.Status.
→˓NOT_FOUND.getStatusCode());

verify(DAO).findById(2L);
}

}

Instantiate a ResourceExtension using its Builder and add the various resource in-
stances you want to test via ResourceExtension.Builder#addResource(Object). Use the
@ExtendWith(DropwizardExtensionsSupport.class) annotation on the class to tell Dropwizard to find
any field of type ResourceExtension.

In your tests, use #target(String path), which initializes a request to talk to and test your instances.

This doesn’t require opening a port, but ResourceExtension tests will perform all the serialization, deserialization,
and validation that happens inside of the HTTP process.

This also doesn’t require a full integration test. In the above example, a mocked PeopleStore is passed to the
PersonResource instance to isolate it from the database. Not only does this make the test much faster, but it allows
your resource unit tests to test error conditions and edge cases much more easily.

Hint: You can trust PeopleStore works because you’ve got working unit tests for it, right?

108 Chapter 15. Testing Dropwizard

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

15.2.1 Default Exception Mappers

By default, a ResourceExtension will register all the default exception mappers (this behavior is new in
1.0). If registerDefaultExceptionMappers in the configuration yaml is planned to be set to false,
ResourceExtension.Builder#setRegisterDefaultExceptionMappers(boolean) will also need to be set to
false. Then, all custom exception mappers will need to be registered on the builder, similarly to how they are registered
in an Application class.

15.2.2 Test Containers

Note that the in-memory Jersey test container does not support all features, such as the
@Context injection. A different test container can be used via ResourceExtension.
Builder#setTestContainerFactory(TestContainerFactory).

For example, if you want to use the Grizzly HTTP server (which supports @Context injections) you need to add the de-
pendency for the Jersey Test Framework providers to your Maven POM and set GrizzlyWebTestContainerFactory
as TestContainerFactory in your test classes.

<dependency>
<groupId>org.glassfish.jersey.test-framework.providers</groupId>
<artifactId>jersey-test-framework-provider-grizzly2</artifactId>
<scope>test</scope>

</dependency>

@ExtendWith(DropwizardExtensionsSupport.class)
class ResourceTestWithGrizzly {

private static final ResourceExtension EXT = ResourceExtension.builder()
.setTestContainerFactory(new GrizzlyWebTestContainerFactory())
.addResource(new ExampleResource())
.build();

@Test
void testResource() {

assertThat(EXT.target("/example").request()
.get(String.class))
.isEqualTo("example");

}
}

15.3 Testing Client Implementations

To avoid circular dependencies in your projects or to speed up test runs, you can test your HTTP client code by writing
a JAX-RS resource as test double and let the DropwizardClientExtension start and stop a simple Dropwizard
application containing your test doubles.

@ExtendWith(DropwizardExtensionsSupport.class)
class CustomClientTest {

@Path("/ping")
public static class PingResource {

@GET
public String ping() {

(continues on next page)

15.3. Testing Client Implementations 109

https://jersey.github.io/documentation/latest/test-framework.html
https://javaee.github.io/grizzly/

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

return "pong";
}

}

private static final DropwizardClientExtension EXT = new␣
→˓DropwizardClientExtension(new PingResource());

@Test
void shouldPing() throws IOException {

final URL url = new URL(EXT.baseUri() + "/ping");
final String response = new BufferedReader(new InputStreamReader(url.

→˓openStream())).readLine();
assertEquals("pong", response);

}
}

Hint: Of course you would use your HTTP client in the @Test method and not java.net.URL#openStream().

The DropwizardClientExtension takes care of:

• Creating a simple default configuration.

• Creating a simplistic application.

• Adding a dummy health check to the application to suppress the startup warning.

• Adding your JAX-RS resources (test doubles) to the Dropwizard application.

• Choosing a free random port number (important for running tests in parallel).

• Starting the Dropwizard application containing the test doubles.

• Stopping the Dropwizard application containing the test doubles.

15.4 Integration Testing

It can be useful to start up your entire application and hit it with real HTTP requests during testing. The
dropwizard-testing module offers helper classes for your easily doing so. The optional dropwizard-client
module offers more helpers, e.g. a custom JerseyClientBuilder, which is aware of your application’s environment.

15.4.1 JUnit 5

Adding DropwizardExtensionsSupport annotation and DropwizardAppExtension extension to your JUnit5 test
class will start the app prior to any tests running and stop it again when they’ve completed (roughly equivalent to
having used @BeforeAll and @AfterAll). DropwizardAppExtension also exposes the app’s Configuration,
Environment and the app object itself so that these can be queried by the tests.

If you don’t want to use the dropwizard-client module or find it excessive for testing, you can get access to a Jersey
HTTP client by calling the client method on the extension. The returned client is managed by the extension and can be
reused across tests.

110 Chapter 15. Testing Dropwizard

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

@ExtendWith(DropwizardExtensionsSupport.class)
class LoginAcceptanceTest {

private static DropwizardAppExtension<TestConfiguration> EXT = new␣
→˓DropwizardAppExtension<>(

MyApp.class,
ResourceHelpers.resourceFilePath("my-app-config.yaml")

);

@Test
void loginHandlerRedirectsAfterPost() {

Client client = EXT.client();

Response response = client.target(
String.format("http://localhost:%d/login", EXT.getLocalPort()))
.request()
.post(Entity.json(loginForm()));

assertThat(response.getStatus()).isEqualTo(302);
}

}

15.4.2 JUnit 4

Adding DropwizardAppRule to your JUnit4 test class will start the app prior to any tests running and stop it again when
they’ve completed (roughly equivalent to having used @BeforeClass and @AfterClass). DropwizardAppRule also
exposes the app’s Configuration, Environment and the app object itself so that these can be queried by the tests.

If you don’t want to use the dropwizard-client module or find it excessive for testing, you can get access to a Jersey
HTTP client by calling the client method on the rule. The returned client is managed by the rule and can be reused
across tests.

public class LoginAcceptanceTest {

@ClassRule
public static final DropwizardAppRule<TestConfiguration> RULE =

new DropwizardAppRule<>(MyApp.class, ResourceHelpers.resourceFilePath("my-
→˓app-config.yaml"));

@Test
public void loginHandlerRedirectsAfterPost() {

Client client = RULE.client();

Response response = client.target(
String.format("http://localhost:%d/login", RULE.getLocalPort()))
.request()
.post(Entity.json(loginForm()));

assertThat(response.getStatus()).isEqualTo(302);
}

}

15.4. Integration Testing 111

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Warning: Resource classes are used by multiple threads concurrently. In general, we recommend that resources
be stateless/immutable, but it’s important to keep the context in mind.

15.4.3 Non-JUnit

By creating a DropwizardTestSupport instance in your test you can manually start and stop the app in your tests, you do
this by calling its before and after methods. DropwizardTestSupport also exposes the app’s Configuration,
Environment and the app object itself so that these can be queried by the tests.

public class LoginAcceptanceTest {

public static final DropwizardTestSupport<TestConfiguration> SUPPORT =
new DropwizardTestSupport<TestConfiguration>(MyApp.class,

ResourceHelpers.resourceFilePath("my-app-config.yaml"),
ConfigOverride.config("server.applicationConnectors[0].port", "0") //␣

→˓Optional, if not using a separate testing-specific configuration file, use a randomly␣
→˓selected port

);

@BeforeAll
public void beforeClass() {

SUPPORT.before();
}

@AfterAll
public void afterClass() {

SUPPORT.after();
}

@Test
public void loginHandlerRedirectsAfterPost() {

Client client = new JerseyClientBuilder(SUPPORT.getEnvironment()).build("test␣
→˓client");

Response response = client.target(
String.format("http://localhost:%d/login", SUPPORT.getLocalPort()))
.request()
.post(Entity.json(loginForm()));

assertThat(response.getStatus()).isEqualTo(302);
}

}

112 Chapter 15. Testing Dropwizard

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

15.5 Testing Commands

Commands can and should be tested, as it’s important to ensure arguments are interpreted correctly, and the output is
as expected.

Below is a test for a command that adds the arguments as numbers and outputs the summation to the console. The test
ensures that the result printed to the screen is correct by capturing standard out before the command is ran.

class CommandTest {
private final PrintStream originalOut = System.out;
private final PrintStream originalErr = System.err;
private final InputStream originalIn = System.in;

private final ByteArrayOutputStream stdOut = new ByteArrayOutputStream();
private final ByteArrayOutputStream stdErr = new ByteArrayOutputStream();
private Cli cli;

@BeforeEach
void setUp() throws Exception {

// Setup necessary mock
final JarLocation location = mock(JarLocation.class);
when(location.getVersion()).thenReturn(Optional.of("1.0.0"));

// Add commands you want to test
final Bootstrap<MyConfiguration> bootstrap = new Bootstrap<>(new␣

→˓MyApplication());
bootstrap.addCommand(new MyAddCommand());

// Redirect stdout and stderr to our byte streams
System.setOut(new PrintStream(stdOut));
System.setErr(new PrintStream(stdErr));

// Build what'll run the command and interpret arguments
cli = new Cli(location, bootstrap, stdOut, stdErr);

}

@AfterEach
void teardown() {

System.setOut(originalOut);
System.setErr(originalErr);
System.setIn(originalIn);

}

@Test
void myAddCanAddThreeNumbersCorrectly() {

final boolean success = cli.run("add", "2", "3", "6");

SoftAssertions softly = new SoftAssertions();
softly.assertThat(success).as("Exit success").isTrue();

// Assert that 2 + 3 + 6 outputs 11
softly.assertThat(stdOut.toString()).as("stdout").isEqualTo("11");
softly.assertThat(stdErr.toString()).as("stderr").isEmpty();

(continues on next page)

15.5. Testing Commands 113

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

softly.assertAll();
}

}

15.6 Testing Database Interactions

In Dropwizard, the database access is managed via the @UnitOfWork annotation used on resource methods. In case
you want to test database-layer code independently, a DAOTestExtension is provided which setups a Hibernate
SessionFactory.

@ExtendWith(DropwizardExtensionsSupport.class)
public class DatabaseTest {

public DAOTestExtension database = DAOTestExtension.newBuilder().
→˓addEntityClass(FooEntity.class).build();

private FooDAO fooDAO;

@BeforeEach
public void setUp() {

fooDAO = new FooDAO(database.getSessionFactory());
}

@Test
public void createsFoo() {

FooEntity fooEntity = new FooEntity("bar");
long id = database.inTransaction(() -> {

return fooDAO.save(fooEntity);
});

assertThat(fooEntity.getId, notNullValue());
}

@Test
public void roundtripsFoo() {

long id = database.inTransaction(() -> {
return fooDAO.save(new FooEntity("baz"));

});

FooEntity fooEntity = fooDAO.get(id);

assertThat(fooEntity.getFoo(), equalTo("baz"));
}

}

The DAOTestExtension

• Creates a simple default Hibernate configuration using an H2 in-memory database

• Provides a SessionFactory instance which can be passed to, e.g., a subclass of AbstractDAO

• Provides a function for executing database operations within a transaction

114 Chapter 15. Testing Dropwizard

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

15.7 Testing Configurations

Configuration objects can be tested for correct deserialization and validation. Using the classes created in polymorphic
configurations as an example, one can assert the expected widget is deserialized based on the type field.

public class WidgetFactoryTest {

private final ObjectMapper objectMapper = Jackson.newObjectMapper();
private final Validator validator = Validators.newValidator();
private final YamlConfigurationFactory<WidgetFactory> factory =

new YamlConfigurationFactory<>(WidgetFactory.class, validator, objectMapper,
→˓"dw");

@Test
public void isDiscoverable() throws Exception {

// Make sure the types we specified in META-INF gets picked up
assertThat(new DiscoverableSubtypeResolver().getDiscoveredSubtypes())

.contains(HammerFactory.class)

.contains(ChiselFactory.class);
}

@Test
public void testBuildAHammer() throws Exception {

final File yml = new File(Resources.getResource("yaml/hammer.yml").toURI());
final WidgetFactory wid = factory.build(yml);
assertThat(wid).isInstanceOf(HammerFactory.class);
assertThat(((HammerFactory) wid).createWidget().getWeight()).isEqualTo(10);

}

// test for the chisel factory
}

If your configuration file contains environment variables or parameters, some additional config is required. As an
example, we will use EnvironmentVariableSubstitutor on top of a simplified version of the above test.

If we have a configuration similar to the following:

widgets:
- type: hammer
weight: ${HAMMER_WEIGHT:-20}

- type: chisel
radius: 0.4

In order to test this, we would require the following in our test class:

public class WidgetFactoryTest {

private final ObjectMapper objectMapper = Jackson.newObjectMapper();
private final Validator validator = Validators.newValidator();
private final YamlConfigurationFactory<WidgetFactory> factory =

new YamlConfigurationFactory<>(WidgetFactory.class, validator, objectMapper,
→˓"dw");

// test for discoverability
(continues on next page)

15.7. Testing Configurations 115

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

@Test
public void testBuildAHammer() throws Exception {

final WidgetFactory wid = factory.build(new SubstitutingSourceProvider(
new ResourceConfigurationSourceProvider(),
new EnvironmentVariableSubstitutor(false)

), "yaml/hammer.yaml");
assertThat(wid).isInstanceOf(HammerFactory.class);
assertThat(((HammerFactory) wid).createWidget().getWeight()).isEqualTo(20);

}

// test for the chisel factory
}

116 Chapter 15. Testing Dropwizard

CHAPTER

SIXTEEN

UPGRADE NOTES

16.1 Upgrade Notes for Dropwizard 0.7.x

• Update Java source and target versions in maven-compiler-plugin to 1.7 (most applications should be already
on 1.7);

• Replace Maven dependencies from com.yammer.dropwizard to io.dropwizard;

• Replace package statements from com.yammer.dropwizard to io.dropwizard throughout the codebase;

• If you use dropwizard-db, update configuration class to use DataSourceFactory;

• If you use dropwizard-hibernate, update Hibernate bundle by overriding getDataSourceFactory;

• If you use dropwizard-migrations, update Migrations bundle by overriding getDataSourceFactory;

• If you serve static files, add dropwizard-assets to dependencies;

• If you use templating, add dropwizard-views-freemarker or dropwizard-views-mustache accordingly;

• Update the application to override getName() instead of providing the bundle with the name;

• Change how resources are added from environment.addResource(resource) to environment.
jersey().register(resource);

• Once everything is compiling, rename *Service class to *Application;

• Change test classes extending ResourceTest to use ResourceTestRule;

• Convert app.yml to the new server layout (see ServerFactory and ConnectorFactory);

16.2 Upgrade Notes for Dropwizard 0.8.x

16.2.1 First

Check out Migration discussion 0.7.1 to 0.8.0 at the dropwizard-dev mailing list.

117

https://groups.google.com/forum/#!topic/dropwizard-dev/VInOW_ebiAc

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

16.2.2 Migration of Apache Commons Lang

The classes were moved to a new package. You have to update the corresponding imports:

search for: org.apache.commons.lang.
replace with: org.apache.commons.lang3.

16.2.3 Use assertions from AssertJ

Instead of the FEST assertions you should use the AssertJ assertions:

search for: org.fest.assertions.api.Assertions.
replace with: org.assertj.core.api.Assertions.

16.2.4 Migration of custom URL pattern

If you set a custom URL pattern in your application run method you should move the definition to your configuration
file:

Remove from Java code (example):

environment.jersey().setUrlPattern("/api/*");

Add to configuration file (example):

server:
rootPath: '/api/*'

16.2.5 Migration of Jersey

This is not a simple search and replace migration, so I show you a few examples of often used code snippets for
integration testing:

Dropwizard Class Rule

The class rule was not modified. It is shown here because it is used in the examples below.

@ClassRule
public static final DropwizardAppRule<SportChefConfiguration> RULE =

new DropwizardAppRule<>(App.class, "config.yaml");

118 Chapter 16. Upgrade Notes

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Executing a GET request

final WebTarget target = ClientBuilder.newClient().target(
String.format("http://localhost:%d/api/user/1", RULE.getLocalPort()));

final Response response = target
.request(MediaType.APPLICATION_JSON_TYPE)
.accept(MediaType.APPLICATION_JSON_TYPE)
.get();

assertThat(response.getStatus()).isEqualTo(Response.Status.OK.getStatusCode());

final User user = response.readEntity(User.class);
assertThat(user.getId()).isEqualTo(1L);
assertThat(user.getFirstName()).isEqualTo("John");
assertThat(user.getLastName()).isEqualTo("Doe");

Executing a POST request

final WebTarget target = ClientBuilder.newClient().target(
String.format("http://localhost:%d/api/user", RULE.getLocalPort()));

final User user = new User(0L, "John", "Doe");

final Response response = target
.request(MediaType.APPLICATION_JSON_TYPE)
.accept(MediaType.APPLICATION_JSON_TYPE)
.post(Entity.json(user));

assertThat(response.getStatus()).isEqualTo(Response.Status.CREATED.getStatusCode());

final URI location = response.getLocation();
assertThat(location).isNotNull();

final String path = location.getPath();
final long newId = Long.parseLong(path.substring(path.lastIndexOf("/") + 1));
assertThat(newId).isGreaterThan(0);

Executing a empty PUT request

Jersey 2 does not by default allow empty PUT or DELETE requests. If you want to enable this, you have to add a
configuration parameter

Client client = ClientBuilder.newClient();
client.property(ClientProperties.SUPPRESS_HTTP_COMPLIANCE_VALIDATION, true);
WebTarget target = client.target(

String.format("http://localhost:%d/api/user", RULE.getLocalPort()));

Response response = target
.request()

(continues on next page)

16.2. Upgrade Notes for Dropwizard 0.8.x 119

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

.put(null);

assertThat(response.getStatus()).isEqualTo(Response.Status.OK.getStatusCode());

Request/response filters

If you previously used jersey container filters in your Dropwizard app, getContainerRequestFilters() will now
fail to resolve:

env.jersey()
.getResourceConfig()
.getContainerRequestFilters()
.add(new AuthorizedFilter());

You might need to rewrite the filter to JAX-RS 2.0 and then you may use the one and only .register() instead.

My filters used imports from jersey.spi.container and needed to be rewritten for Jersey 2.x. See also: Jersey 1.x
to 2.x migration guide.

env.jersey().register(new AuthorizationFilter());

16.3 Upgrade Notes for Dropwizard 0.9.x

16.3.1 Migrating Auth

1. Any custom types representing a user need to implement the Principal interface

2. In your Application#run add

environment.jersey().register(RolesAllowedDynamicFeature.class);

3. Create an Authorizer

public class ExampleAuthorizer implements Authorizer<User> {
@Override
public boolean authorize(User user, String role) {
return user.getName().equals("good-guy") && role.equals("ADMIN");

}
}

4. Create an AuthFilter using your Authenticator and Authorizer

final BasicCredentialAuthFilter<User> userBasicCredentialAuthFilter =
new BasicCredentialAuthFilter.Builder<User>()

.setAuthenticator(new ExampleAuthenticator())

.setRealm("SUPER SECRET STUFF")

.setAuthorizer(new ExampleAuthorizer())

.buildAuthFilter();

5. Register AuthDynamicFeature with your AuthFilter

120 Chapter 16. Upgrade Notes

https://jersey.github.io/documentation/2.16/user-guide.html#mig-1.x
https://jersey.github.io/documentation/2.16/user-guide.html#mig-1.x

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

environment.jersey().register(new␣
→˓AuthDynamicFeature(userBasicCredentialAuthFilter));

6. Register the AuthValueFactoryProvider.Binder so with your custom user type if you have one

environment.jersey().register(new AuthValueFactoryProvider.Binder(User.class));

7. Annotate resources methods that already have @Auth with @RolesAllowed("admin") where admin is a role

$ curl 'testUser:secret@localhost:8080/protected'
Hey there, testUser. You know the secret!

16.3.2 UnwrapValidatedValue Changes

With the upgrade to Hibernate Validator 5.2.1.Final, the behavior of @UnwrapValidatedValue has slightly changed.
In some situations, the annotation is now unnecessary. However, when inference is not possible and is ambiguous
where the constraint annotation applies, a runtime exception is thrown. This is only a problem when dealing with
constraints that can apply to both the wrapper and inner type like @NotNull. The fix is to explicitly set false or true
for @UnwrapValidatedValue

For instance if you previously had code like:

@GET
public String heads(@QueryParam("cheese") @NotNull IntParam secretSauce) {

Where @NotNull is meant to apply to wrapper type of IntParam and not the inner type of Integer (as IntParam
will never yield a null integer). Hibernate Validator doesn’t know this, but it does know that @NotNull can be applied
to both IntParam and Integer, so in Dropwizard 0.9.x the previous code will now fail and must be changed to

@GET
public String heads(@QueryParam("cheese") @NotNull @UnwrapValidatedValue(false) IntParam␣
→˓secretSauce) {

For more information on the behavior changes, see accompanying table for automatic value unwrapping

16.3.3 Logging bootstrap

If you configured console logging in your tests with a utility method shipped with Dropwizard, you should replace calls
of LoggingFactory.bootstrap to BootstrapLogging.bootstrap.

16.4 Upgrade Notes for Dropwizard 1.0.x

16.4.1 Change the project compile and target level to 1.8

Dropwizard 1.0.0 is compiled against JDK 1.8 uses its features extensively. So, to use this version of Dropwizard your
project should be compiled and targeted to run on JDK 1.8.

16.4. Upgrade Notes for Dropwizard 1.0.x 121

https://hibernate.atlassian.net/browse/HV-925

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

16.4.2 Remove the dropwizard-java8 module

Support for Java 8 features is now provided out of the box.

16.4.3 Migrate dropwizard-spdy to dropwizard-http2

If you used the SPDY connector, you should use the HTTP/2 integration now.

- type: spdy3
- type: h2
port: 8445
keyStorePath: example.keystore
keyStorePassword: example

16.4.4 Replace Guava’s Optional by java.util.Optional in Dropwizard public API

Although Guava’s Optional should be still supported in your Jersey and JDBI resources, Dropwizard API now exposes
optional results as java.util.Optional.

For example, in authenticators you should change Optional.absent to Optional.empty.

16.4.5 Migrate your Hibernate resources to Hibernate 5

Checkout the Hibernate 5.0 migration guide

16.4.6 Add missing @Valid annotations

In 0.9.x, @Validated was sufficient to enable validation. In 1.0.x, it is necessary to include @Valid as well.

16.5 Upgrade Notes for Dropwizard 1.1.x

Due to PR #1851, users must now add mockito as a test dependency

<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-core</artifactId>
<version>2.7.6</version>
<scope>test</scope>

</dependency>

Else become susceptible to the following error:

java.lang.NoClassDefFoundError: org/mockito/Mockito

Due to PR #1695, Cli no longer allows exceptions to propagate, (which is a net positive), but I did have to rewrite my
tests to no longer trap for exceptions but examine stderr.

122 Chapter 16. Upgrade Notes

https://github.com/hibernate/hibernate-orm/blob/5.0/migration-guide.adoc
https://github.com/dropwizard/dropwizard/pull/1251#issuecomment-142645734
https://github.com/dropwizard/dropwizard/pull/1851
https://github.com/dropwizard/dropwizard/pull/1695

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

If you used the Hibernate integration, you need to upgrade your data access code to Hibernate 5.2.7 from 5.1.0. Please
see the discussion of the change in PR #1871. Please also check out the Hibernate 5.2 Migration Guide.

16.6 Upgrade Notes for Dropwizard 2.0.x

16.6.1 Dropwizard Bill of Materials (BOM)

Starting with Dropwizard 2.0.0, the io.dropwizard:dropwizard-bom artifact only specifies the versions of the
official Dropwizard modules but no transitive dependencies anymore.

If you want to pin the transitive dependencies, you’ll have to use the io.dropwizard:dropwizard-dependencies
artifact.

It can be used as parent POM, for which you can override individual dependency versions by setting certain Maven
properties, see dropwizard-dependencies/pom.xml for a complete list.

<parent>
<groupId>io.dropwizard</groupId>
<artifactId>dropwizard-dependencies</artifactId>
<version>2.0.0</version>

</parent>

<properties>
<!-- Use older version of Google Guava -->
<guava.version>28.0-jre</guava.version>

</properties>

Alternatively, you can also import it as a regular BOM without the possibility to override specific transitive dependency
versions with a Maven property:

<dependencyManagement>
<dependencies>
<dependency>
<groupId>io.dropwizard</groupId>
<artifactId>dropwizard-dependencies</artifactId>
<version>2.0.0</version>
<type>pom</type>
<scope>import</scope>

</dependency>
</dependencies>

</dependencyManagement>

See also: #2897

16.6. Upgrade Notes for Dropwizard 2.0.x 123

https://github.com/dropwizard/dropwizard/pull/1871
https://github.com/hibernate/hibernate-orm/wiki/Migration-Guide---5.2
https://github.com/dropwizard/dropwizard/blob/5f4ef68cdc1f42f4b21c018cb364bea9fc7f9827/dropwizard-dependencies/pom.xml#L20-L68
https://github.com/dropwizard/dropwizard/pull/2897

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

16.6.2 Removed Configuration Options

The following configuration options have been removed, so Dropwizard configuration files should no longer use these
options

• soLingerTime: the configuration option would have become a noop anyways. See #2490 for more info

• blockingTimeout: was previously used as an internal jetty failsafe mechanism, and that use case was no longer
deemed necessary. If one had previously used blockingTimeout to discard slow clients, please use the new
configuration options minRequestDataPerSecond and minResponseDataPerSecond

• minRequestDataRate: has been renamed to minRequestDataPerSecond and changed from a number to a
size like “100 bytes”

16.6.3 Jersey

Dropwizard has upgraded to Eclipse Jersey 2.29, but it has come at some migration cost:

If one created a custom provider (eg: parse / write JSON differently, so a custom JacksonJaxbJsonProvider is
written), you must annotate the class with the appropriate @Consumes and @Produces and register it with a Jersey
Feature instead of an AbstractBinder if it been so previously.

HK2 internal API has been updated, so if you previously had a AbstractValueFactoryProvider, that will need to
migrate to a AbstractValueParamProvider

Jersey Reactive Client API was updated to remove RxClient, as rx capabilities are built into the client. You only need
to use Dropwizard’s buildRx for client when you want a switch the default to something like rxjava 2’s Flowable

Context injection on fields in resource instances

The given resource class has different behavior in Dropwizard 1.3 and Dropwizard 2.0 depending on how it is registered.

@Path("/")
@Produces(MediaType.APPLICATION_JSON)
public class InfoResource {

@Context
UriInfo requestUri;

@GET
public String getInfo() {

return requestUri.getRequestUri().toString()
}

}

There are two ways to register this resource:

@Override
public void run(InfoConfiguration configuration, Environment environment) {

// 1. Register an instance of the resource
environment.jersey().register(new InfoResource());

// 2. Register the class as a resource
environment.jersey().register(InfoResource.class);

}

124 Chapter 16. Upgrade Notes

https://github.com/dropwizard/dropwizard/pull/2490
https://github.com/eclipse/jetty.project/issues/2525
https://github.com/eclipse/jetty.project/issues/2525

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

The first method (registering an instance) will now not work in Dropwizard 2.0. Migrating resource instances with
field context injections to Dropwizard 2.0 involves pushing the field into a parameter in the desired endpoint

@Path("/")
@Produces(MediaType.APPLICATION_JSON)
public class InfoResource {

- @Context
- UriInfo requestUri;

@GET
- public String getInfo() {
+ public String getInfo(@Context UriInfo requestUri) {

return requestUri.getRequestUri().toString()
}

}

For more information see #2781

16.6.4 More Secure TLS

Dropwizard 2.0, by default, only allows cipher suites that support forward secrecy. The only cipher suites newly disabled
are those under the TLS_RSA_* family. Clients who don’t support forward secrecy (expected to be a small amount)
may now find that they can’t communicate with a Dropwizard 2.0 server. If necessary one can override what cipher
suites are blacklisted using the excludedCipherSuites configuration option.

Dropwizard 2.0, by default, only supports TLS 1.2. While Dropwizard 1.x effectively only supported TLS 1.2, due to the
supported cipher suites, one could still conceivably configure their server or receive a client that could negotiate a TLS
1.0 or 1.1 connection. One can still decide what TLS protocols are on the blacklist by configuring excludedProtocols

We also hope that in 2.0 it is more clear what protocols and cipher suites are enabled / disabled, as previously one
would see the following statement logged on startup:

Supported protocols: [SSLv2Hello, SSLv3, TLSv1, TLSv1.1, TLSv1.2]

While not technically wrong, displaying the protocols that could be enabled is misleading as it makes one believe that
Dropwizard employs extremely unsafe defaults. We’ve reworked what is logged to only the protocols and cipher suites
that Dropwizard will expose. And log the protocols and cipher suites that Dropwizard will reject, and thus could expose
them if configured to do so. So now you’ll see the following in the logs:

Enabled protocols: [TLSv1.2]
Disabled protocols: [SSLv2Hello, SSLv3, TLSv1, TLSv1.1]

16.6.5 Jackson Changes

DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES is now disabled by default, so unrecognized fields will
now be silently ignored. One can revert back to the 1.x behavior with:

public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {
bootstrap.getObjectMapper().enable(DeserializationFeature.FAIL_ON_UNKNOWN_

→˓PROPERTIES);
}

16.6. Upgrade Notes for Dropwizard 2.0.x 125

https://github.com/dropwizard/dropwizard/issues/2781

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

16.6.6 Support for JDBI 2.x moved out of Dropwizard core modules

The dropwizard-jdbi module has been moved out of Dropwizard core modules (#2922).

The reason for this is that JDBI 2.x hasn’t been updated since January 2017 and the dropwizard-jdbi3 module,
which targets its successor Jdbi 3.x, still is part of the Dropwizard core modules.

If you want to keep using JDBI 2.x, you can change the Maven coordinates of dropwizard-jdbi as follows:

<!-- Old artifact coordinates -->
<dependency>

<groupId>io.dropwizard</groupId>
<artifactId>dropwizard-jdbi</artifactId>
<version>2.0.0</version>

</dependency>

<!-- New artifact coordinates -->
<dependency>

<groupId>io.dropwizard.modules</groupId>
<artifactId>dropwizard-jdbi</artifactId>
<version>2.0.0</version>

</dependency>

16.6.7 Miscellaneous

Improved validation message for min/max duration

@MinDuration / @MaxDuration have had their validation messages improved, so instead of

messageRate must be less than (or equal to, if in ‘inclusive’ mode) 1 MINUTES

one will see if inclusive is true

messageRate must be less than or equal to 1 MINUTES

if inclusive is false:

messageRate must be less than 1 MINUTES

Task execute method

The parameters argument of the Task.execute method has a slightly different Map type. Classes extending the
abstract class Task should therefore change

@Override
public void execute(ImmutableMultimap<String, String> parameters, PrintWriter output)␣
→˓throws Exception {

into

@Override
public void execute(Map<String,List<String>> parameters, PrintWriter output) throws␣
→˓Exception {

126 Chapter 16. Upgrade Notes

https://github.com/dropwizard/dropwizard/pull/2922

CHAPTER

SEVENTEEN

DROPWIZARD EXAMPLE, STEP BY STEP

The dropwizard-example module provides you with a working Dropwizard Example Application.

• Preconditions

– Make sure you have Maven installed

– Make sure JAVA_HOME points at JDK 8

– Make sure you have curl

• Preparations to start the Dropwizard Example Application

– Open a terminal / cmd

– Navigate to the project folder of the Dropwizard Example Application

– mvn clean install

– java -jar target/dropwizard-example-1.0.0.jar db migrate example.yml

– The statement above ran the liquibase migration in /src/main/resources/migrations.xml, creating
the table schema

• Starting the Dropwizard Example Application

– You can now start the Dropwizard Example Application by running java -jar target/
dropwizard-example-1.0.0.jar server example.yml

– Alternatively, you can run the Dropwizard Example Application in your IDE: com.example.
helloworld.HelloWorldApplication server example.yml

• Working with the Dropwizard Example Application

– Insert a new person: curl -H "Content-Type: application/json" -d '{"fullName":"John
Doe", "jobTitle" : "Chief Wizard" }' http://localhost:8080/people

– Retrieve that person: curl http://localhost:8080/people/1

– View that person in a freemarker template: curl or open in a browser http://localhost:8080/people/
1/view_freemarker

– View that person in a mustache template: curl or open in a browser http://localhost:8080/people/
1/view_mustache

127

https://maven.apache.org/

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

128 Chapter 17. Dropwizard Example, Step by Step

CHAPTER

EIGHTEEN

DROPWIZARD CONFIGURATION REFERENCE

18.1 Servers

Tweaking some of the options will require good understanding of how Jetty is working. See the Jetty architecture
chapter for reference.

server:
type: default
maxThreads: 1024

129

http://www.eclipse.org/jetty/documentation/current/architecture.html#basic-architecture
http://www.eclipse.org/jetty/documentation/current/architecture.html#basic-architecture

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

130 Chapter 18. Dropwizard Configuration Reference

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

18.1.1 All

Name Default Description
type default

• default
• simple

maxThreads 1024 The maximum number of threads
the thread pool is allowed to
grow. Jetty will throw java.
lang.IllegalStateException:
Insufficient threads: in case
of too aggressive limit on the thread
count.

minThreads 8 The minimum number of threads to
keep alive in the thread pool. Note
that each Jetty connector consumes
threads from the pool. See HTTP
connector how the thread counts are
calculated.

maxQueuedRequests 1024 The maximum number of requests to
queue before blocking the acceptors.

idleThreadTimeout 1 minute The amount of time a worker thread
can be idle before being stopped.

nofileSoftLimit (none) The number of open file descrip-
tors before a soft error is issued.
Requires Jetty’s libsetuid.so on
java.library.path.

nofileHardLimit (none) The number of open file descrip-
tors before a hard error is issued.
Requires Jetty’s libsetuid.so on
java.library.path.

gid (none) The group ID to switch to once the
connectors have started. Requires
Jetty’s libsetuid.so on java.
library.path.

uid (none) The user ID to switch to once the
connectors have started. Requires
Jetty’s libsetuid.so on java.
library.path.

user (none) The username to switch to once the
connectors have started. Requires
Jetty’s libsetuid.so on java.
library.path.

group (none) The group to switch to once the
connectors have started. Requires
Jetty’s libsetuid.so on java.
library.path.

umask (none) The umask to switch to once the
connectors have started. Requires
Jetty’s libsetuid.so on java.
library.path.

startsAsRoot (none) Whether or not the Dropwizard ap-
plication is started as a root user.
Requires Jetty’s libsetuid.so on
java.library.path.

shutdownGracePeriod 30 seconds The maximum time to wait for
Jetty, and all Managed instances, to
cleanly shutdown before forcibly ter-
minating them.

allowedMethods GET, POST, PUT, DELETE, HEAD,
OPTIONS, PATCH

The set of allowed HTTP methods.
Others will be rejected with a 405
Method Not Allowed response.

rootPath /* The URL pattern relative to
applicationContextPath from
which the JAX-RS resources will be
served.

registerDefaultExceptionMappers true Whether or not the default Jersey
ExceptionMappers should be regis-
tered. Set this to false if you want to
register your own.

enableThreadNameFilter true Whether or not to apply the
ThreadNameFilter that adjusts
thread names to include the request
method and request URI.

dumpAfterStart false Whether or not to dump Jetty Diag-
nostics after start.

dumpBeforeStop false Whether or not to dump Jetty Diag-
nostics before stop.

18.1. Servers 131

https://www.eclipse.org/jetty/documentation/9.4.x/jetty-dump-tool.html
https://www.eclipse.org/jetty/documentation/9.4.x/jetty-dump-tool.html
https://www.eclipse.org/jetty/documentation/9.4.x/jetty-dump-tool.html
https://www.eclipse.org/jetty/documentation/9.4.x/jetty-dump-tool.html

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

GZip

server:
gzip:
bufferSize: 8KiB

Name De-
fault

Description

enabled true If true, all requests with gzip in the Accept-Encoding header will have their response
entities compressed and requests with gzip in the Content-Encoding header will have
their request entities decompressed.

minimu-
mEntity-
Size

256
bytes

All response entities under this size are not compressed.

bufferSize 8KiB The size of the buffer to use when compressing.
exclude-
dUserA-
gentPat-
terns

[] The set of user agent patterns to exclude from compression.

com-
pressed-
Mime-
Types

Jetty’s
de-
fault

The list of mime types to compress. The default is all types apart the commonly known
image, video, audio and compressed types.

included-
Methods

Jetty’s
de-
fault

The list of HTTP methods to compress. The default is to compress only GET responses.

deflate-
Compres-
sionLevel

-1 The compression level used for deflation(compression).

gzipCom-
patibleIn-
flation

true This option is unused and deprecated as compressed requests without header info are un-
supported

syncFlush false The flush mode. Set to true if the application wishes to stream (e.g. SSE) the data, but this
may hurt compression performance (as all pending output is flushed).

Request Log

The new request log uses the logback-access library for processing request logs, which allow to use an extended set of
logging patterns. See the logback-access-pattern docs for the reference.

server:
requestLog:
appenders:

- type: console

Name Default Description
appen-
ders

console ap-
pender

The set of AppenderFactory appenders to which requests will be logged. See logging
for more info.

132 Chapter 18. Dropwizard Configuration Reference

http://logback.qos.ch/access.html
http://logback.qos.ch/manual/layouts.html#AccessPatternLayout

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Classic Request Log

The classic request log uses the logback-classic library for processing request logs. It produces logs only in the standard
NCSA common log format, but allows to use an extended set of appenders.

server:
requestLog:
type: classic
timeZone: UTC
appenders:

- type: console

Name Default Description
time-
Zone

UTC The time zone to which request timestamps will be converted.

appen-
ders

console ap-
pender

The set of AppenderFactory appenders to which requests will be logged. See logging
for more info.

Server Push

Server push technology allows a server to send additional resources to a client along with the requested resource. It
works only for HTTP/2 connections.

server:
serverPush:
enabled: true
associatePeriod: '4 seconds'
maxAssociations: 16
refererHosts: ['dropwizard.io', 'dropwizard.github.io']
refererPorts: [8444, 8445]

18.1. Servers 133

http://logback.qos.ch/
https://en.wikipedia.org/wiki/Common_Log_Format

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

NameDe-
fault

Description

en-
abled

false If true, the filter will organize resources as primary resources (those referenced by the Referer header)
and secondary resources (those that have the Referer header). Secondary resources that have been
requested within a time window from the request of the primary resource will be associated with it.
The next time a client requests the primary resource, the server will send to the client the secondary
resources along with the primary in a single response.

as-
so-
ci-
ate-
Pe-
riod

4
sec-
onds

The time window within which a request for a secondary resource will be associated to a primary
resource.

max-
As-
so-
cia-
tions

16 The maximum number of secondary resources that may be associated to a primary resource.

ref-
er-
erHosts

All
hosts

The list of referrer hosts for which the server push technology is supported.

ref-
er-
erPorts

All
ports

The list of referrer ports for which the server push technology is supported.

18.1.2 Simple

Extends the attributes that are available to all servers

server:
type: simple
applicationContextPath: /application
adminContextPath: /admin
connector:
type: http
port: 8080

Name De-
fault

Description

connector http
con-
nector

HttpConnectorFactory HTTP connector listening on port 8080. The ConnectorFactory
connector which will handle both application and admin requests. TODO link to connector
below.

applica-
tionCon-
textPath

/appli-
cation

The context path of the application servlets, including Jersey.

adminCon-
textPath

/admin The context path of the admin servlets, including metrics and tasks.

134 Chapter 18. Dropwizard Configuration Reference

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

18.1.3 Default

Extends the attributes that are available to all servers

server:
adminMinThreads: 1
adminMaxThreads: 64
adminContextPath: /
applicationContextPath: /
applicationConnectors:
- type: http
port: 8080

- type: https
port: 8443
keyStorePath: example.keystore
keyStorePassword: example
validateCerts: false

adminConnectors:
- type: http
port: 8081

- type: https
port: 8444
keyStorePath: example.keystore
keyStorePassword: example
validateCerts: false

Name Default Description
application-
Connectors

An HTTP connector listen-
ing on port 8080.

A set of connectors which will handle application requests.

adminConnec-
tors

An HTTP connector listen-
ing on port 8081.

An HTTP connector listening on port 8081. A set of connectors
which will handle admin requests.

admin-
MinThreads

1 The minimum number of threads to use for admin requests.

adminMax-
Threads

64 The maximum number of threads to use for admin requests.

adminCon-
textPath

/ The context path of the admin servlets, including metrics and
tasks.

application-
ContextPath

/ The context path of the application servlets, including Jersey.

18.2 Connectors

18.2.1 HTTP

Extending from the default server configuration
server:
applicationConnectors:
- type: http
port: 8080
bindHost: 127.0.0.1 # only bind to loopback

(continues on next page)

18.2. Connectors 135

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

inheritChannel: false
headerCacheSize: 512 bytes
outputBufferSize: 32KiB
maxRequestHeaderSize: 8KiB
maxResponseHeaderSize: 8KiB
inputBufferSize: 8KiB
idleTimeout: 30 seconds
minBufferPoolSize: 64 bytes
bufferPoolIncrement: 1KiB
maxBufferPoolSize: 64KiB
minRequestDataPerSecond: '0 bytes'
minResponseDataPerSecond: '0 bytes'
acceptorThreads: 1
selectorThreads: 2
acceptQueueSize: 1024
reuseAddress: true
useServerHeader: false
useDateHeader: true
useForwardedHeaders: false
useProxyProtocol: false
httpCompliance: RFC7230

136 Chapter 18. Dropwizard Configuration Reference

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Name Default Description
port 8080 The TCP/IP port on which to listen

for incoming connections.
bindHost (none) The hostname to bind to.
inheritChannel false Whether this connector uses a chan-

nel inherited from the JVM. Use it
with Server::Starter, to launch an in-
stance of Jetty on demand.

headerCacheSize 512 bytes The size of the header field cache.
outputBufferSize 32KiB The size of the buffer into which

response content is aggregated be-
fore being sent to the client. A
larger buffer can improve perfor-
mance by allowing a content pro-
ducer to run without blocking, how-
ever larger buffers consume more
memory and may induce some la-
tency before a client starts process-
ing the content.

maxRequestHeaderSize 8KiB The maximum size of a request
header. Larger headers will allow
for more and/or larger cookies plus
larger form content encoded in a
URL. However, larger headers con-
sume more memory and can make a
server more vulnerable to denial of
service attacks.

maxResponseHeaderSize 8KiB The maximum size of a response
header. Larger headers will allow
for more and/or larger cookies and
longer HTTP headers (eg for redi-
rection). However, larger headers
will also consume more memory.

inputBufferSize 8KiB The size of the per-connection input
buffer.

idleTimeout 30 seconds The maximum idle time
for a connection, which
roughly translates to the
java.net.Socket#setSoTimeout(int)
call, although with NIO implemen-
tations other mechanisms may be
used to implement the timeout.
The max idle time is applied when
waiting for a new message to be
received on a connection or when
waiting for a new message to be
sent on a connection. This value is
interpreted as the maximum time
between some progress being made
on the connection. So if a single
byte is read or written, then the
timeout is reset.

minBufferPoolSize 64 bytes The minimum size of the buffer
pool.

bufferPoolIncrement 1KiB The increment by which the buffer
pool should be increased.

maxBufferPoolSize 64KiB The maximum size of the buffer
pool.

minRequestDataPerSecond 0 The minimum request data rate in
bytes per second; or <= 0 for no
limit.

minResponseDataPerSecond 0 The minimum response data rate in
bytes per second; or <= 0 for no
limit.

acceptorThreads (Jetty’s default) The number of worker threads ded-
icated to accepting connections. By
default is max(1, min(4, #CPUs/8)).

selectorThreads (Jetty’s default) The number of worker threads ded-
icated to sending and receiving
data. By default is max(1, min(4,
#CPUs/2)).

acceptQueueSize (OS default) The size of the TCP/IP accept queue
for the listening socket.

reuseAddress true Whether or not SO_REUSEADDR is
enabled on the listening socket.

useServerHeader false Whether or not to add the Server
header to each response.

useDateHeader true Whether or not to add the Date
header to each response.

useForwardedHeaders false Whether or not to look at
X-Forwarded-* headers added
by proxies. See ForwardedRequest-
Customizer for details.

useProxyProtocol false Whether or not to accept PROXY pro-
tocol requests from a reverse proxy
such as HAProxy. ProxyConnec-
tionFactory supports version 1 and 2
of the PROXY protocol.

httpCompliance RFC7230 This sets the http compliance level
used by Jetty when parsing http,
this can be useful when using a
non-RFC7230 compliant front
end, such as nginx, which can
produce multi-line headers when
forwarding client certificates using
proxy_set_header X-SSL-CERT
$ssl_client_cert; Possi-
ble values are set forth in the
org.eclipse.jetty.http.
HttpCompliance enum:

• RFC7230: Disallow header
folding.

• RFC2616: Allow header fold-
ing.

requestCookieCompliance RFC6265 This sets the cookie compliance
level used by Jetty when parsing
request Cookie headers, this can
be useful when needing to sup-
port Version=1 cookies defined
in RFC2109 (and continued in
RFC2965) which allows for spe-
cial/reserved characters (control,
separator, et al) to be enclosed
within double quotes when used
in a cookie value; Possible values
are set forth in the org.eclipse.
jetty.http.CookieCompliance
enum:

• RFC6265: Special characters
in cookie values must be en-
coded.

• RFC2965: Allows for special
characters enclosed within
double quotes.

responseCookieCompliance RFC6265 This sets the cookie compliance
level used by Jetty when gener-
ating response Set-Cookie head-
ers, this can be useful when need-
ing to support Version=1 cookies
defined in RFC2109 (and contin-
ued in RFC2965) which allows for
special/reserved characters (control,
separator, et al) to be enclosed
within double quotes when used in a
cookie value; Possible values are set
forth in the org.eclipse.jetty.
http.CookieCompliance enum:

• RFC6265: Special characters
in cookie values must be en-
coded.

• RFC2965: Allows for special
characters enclosed within
double quotes.

18.2. Connectors 137

https://github.com/kazuho/p5-Server-Starter
https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html#setSoTimeout-int-
https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/server/ForwardedRequestCustomizer.html
https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/server/ForwardedRequestCustomizer.html
https://www.haproxy.org/
https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/server/ProxyConnectionFactory.html
https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/server/ProxyConnectionFactory.html

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

18.2.2 HTTPS

Extends the attributes that are available to the HTTP connector

Extending from the default server configuration
server:
applicationConnectors:
- type: https
port: 8443
....
keyStorePath: /path/to/file
keyStorePassword: changeit
keyStoreType: JKS
keyStoreProvider:
trustStorePath: /path/to/file
trustStorePassword: changeit
trustStoreType: JKS
trustStoreProvider:
keyManagerPassword: changeit
needClientAuth: false
wantClientAuth:
certAlias: <alias>
crlPath: /path/to/file
enableCRLDP: false
enableOCSP: false
maxCertPathLength: (unlimited)
ocspResponderUrl: (none)
jceProvider: (none)
validateCerts: false
validatePeers: false
supportedProtocols: (JVM default)
excludedProtocols: [SSL, SSLv2, SSLv2Hello, SSLv3] # (Jetty's default)
supportedCipherSuites: (JVM default)
excludedCipherSuites: [.*_(MD5|SHA|SHA1)$] # (Jetty's default)
allowRenegotiation: true
endpointIdentificationAlgorithm: (none)

138 Chapter 18. Dropwizard Configuration Reference

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Name De-
fault

Description

key-
StorePath

RE-
QUIRED

The path to the Java key store which contains the host certificate and private key.

key-
StorePass-
word

RE-
QUIRED

The password used to access the key store.

key-
Store-
Type

JKS The type of key store (usually JKS, PKCS12, JCEKS, Windows-MY}, or Windows-ROOT).

key-
Store-
Provider

(none) The JCE provider to use to access the key store.

trust-
StorePath

(none) The path to the Java key store which contains the CA certificates used to establish trust.

trust-
StorePass-
word

(none) The password used to access the trust store.

trust-
Store-
Type

JKS The type of trust store (usually JKS, PKCS12, JCEKS, Windows-MY, or Windows-ROOT).

trust-
Store-
Provider

(none) The JCE provider to use to access the trust store.

key-
Man-
ager-
Pass-
word

(none) The password, if any, for the key manager.

need-
Clien-
tAuth

(none) Whether or not client authentication is required.

want-
Clien-
tAuth

(none) Whether or not client authentication is requested.

cer-
tAlias

(none) The alias of the certificate to use.

crlPath (none) The path to the file which contains the Certificate Revocation List.
en-
able-
CRLDP

false Whether or not CRL Distribution Points (CRLDP) support is enabled.

en-
ableOCSP

false Whether or not On-Line Certificate Status Protocol (OCSP) support is enabled.

max-
Cert-
Path-
Length

(un-
lim-
ited)

The maximum certification path length.

oc-
spRe-
spon-
derUrl

(none) The location of the OCSP responder.

jce-
Provider

(none) The name of the JCE provider to use for cryptographic support. See Oracle documentation for
more information.

vali-
date-
Certs

false Whether or not to validate TLS certificates before starting. If enabled, Dropwizard will refuse
to start with expired or otherwise invalid certificates. This option will cause unconditional
failure in Dropwizard 1.x until a new validation mechanism can be implemented.

vali-
date-
Peers

false Whether or not to validate TLS peer certificates. This option will cause unconditional failure
in Dropwizard 1.x until a new validation mechanism can be implemented.

sup-
port-
edPro-
tocols

(none) A list of protocols (e.g., SSLv3, TLSv1) which are supported. All other protocols will be re-
fused.

ex-
clud-
edPro-
tocols

[“SSL.*”,
“TLSv1”,
“TLSv1\.1”]

A list of protocols (e.g., SSLv3, TLSv1) which are excluded. These protocols will be refused.

sup-
port-
edCi-
pher-
Suites

(none) A list of cipher suites (e.g., TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256) which are sup-
ported. All other cipher suites will be refused.

ex-
clud-
edCi-
pher-
Suites

(none) A list of cipher suites (e.g., TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256) which are
excluded. These cipher suites will be refused and exclusion takes higher precedence
than inclusion, such that if a cipher suite is listed in supportedCipherSuites and
excludedCipherSuites, the cipher suite will be excluded. To verify that the proper cipher
suites are being whitelisted and blacklisted, it is recommended to use the tool sslyze.

al-
lowRene-
gotia-
tion

true Whether or not TLS renegotiation is allowed.

end-
pointI-
denti-
fica-
tion-
Algo-
rithm

(none) Which endpoint identification algorithm, if any, to use during the TLS handshake.

18.2. Connectors 139

https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html
https://github.com/nabla-c0d3/sslyze

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

18.2.3 HTTP/2 over TLS

HTTP/2 is a new protocol, intended as a successor of HTTP/1.1. It adds several important features like binary structure,
stream multiplexing over a single connection, header compression, and server push. At the same time it remains
semantically compatible with HTTP/1.1, which should make the upgrade process more seamless. Checkout HTTP/2
FAQ for the further information.

For an encrypted connection HTTP/2 uses ALPN protocol. It’s a TLS extension, that allows a client to negotiate
a protocol to use after the handshake is complete. If either side does not support ALPN, then the protocol will be
ignored, and an HTTP/1.1 connection over TLS will be used instead.

For this connector to work with ALPN protocol you need to either:

• Enable native SSL support via Google’s Conscrypt as described in the SSL section of the Core manual; or

• Provide alpn-boot library to JVM’s bootpath. The correct library version depends on the JVM version. Consult
Jetty ALPN guide for the reference.

Note that your JVM also must provide TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 cipher. The specification
states that HTTP/2 deployments must support it to avoid handshake failures. It’s the single supported cipher in
HTTP/2 connector by default. In case you want to support more strong ciphers, you should specify them in the
supportedCipherSuites parameter along with TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256.

This connector extends the attributes that are available to the HTTPS connector

server:
applicationConnectors:
- type: h2
port: 8445
maxConcurrentStreams: 1024
initialStreamRecvWindow: 65535
keyStorePath: /path/to/file # required
keyStorePassword: changeit
trustStorePath: /path/to/file # required
trustStorePassword: changeit
supportedCipherSuites: # optional
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Name De-
fault

Description

maxConcur-
rentStreams

1024 The maximum number of concurrently open streams allowed on a single HTTP/2 connec-
tion. Larger values increase parallelism, but cost a memory commitment.

initialStream-
RecvWindow

65535 The initial flow control window size for a new stream. Larger values may allow greater
throughput, but also risk head of line blocking if TCP/IP flow control is triggered.

140 Chapter 18. Dropwizard Configuration Reference

https://http2.github.io/faq/
http://www.eclipse.org/jetty/documentation/current/alpn-chapter.html
http://http2.github.io/http2-spec/index.html#rfc.section.9.2.2

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

18.2.4 HTTP/2 Plain Text

HTTP/2 promotes using encryption, but doesn’t require it. However, most browsers stated that they will not support
HTTP/2 without encryption. Currently no browser supports HTTP/2 unencrypted.

The connector should only be used in closed secured networks or during development. It expects from clients an
HTTP/1.1 OPTIONS request with Upgrade : h2c header to indicate a wish to upgrade to HTTP/2, or a request
with the HTTP/2 connection preface. If the client doesn’t support HTTP/2, a plain HTTP/1.1 connections will be used
instead.

This connector extends the attributes that are available to the HTTP connector

server:
applicationConnectors:
- type: h2c
port: 8446
maxConcurrentStreams: 1024
initialStreamRecvWindow: 65535

Name De-
fault

Description

maxConcur-
rentStreams

1024 The maximum number of concurrently open streams allowed on a single HTTP/2 connec-
tion. Larger values increase parallelism, but cost a memory commitment.

initialStream-
RecvWindow

65535 The initial flow control window size for a new stream. Larger values may allow greater
throughput, but also risk head of line blocking if TCP/IP flow control is triggered.

18.3 Tasks

admin:
tasks:
printStackTraceOnError: true

Name Default Description
printStackTraceOnError false Print the full stack trace when the execution of a task failed.

18.4 Health checks

admin:
healthChecks:
minThreads: 1
maxThreads: 4
workQueueSize: 1

Name Default Description
minThreads 1 The minimum number of threads for executing health checks.
maxThreads 4 The maximum number of threads for executing health checks.
workQueueSize 1 The length of the work queue for health check executions.

18.3. Tasks 141

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

18.5 Logging

logging:
level: INFO
loggers:
"io.dropwizard": INFO
"org.hibernate.SQL":
level: DEBUG
additive: false
appenders:

- type: file
currentLogFilename: /var/log/myapplication-sql.log
archivedLogFilenamePattern: /var/log/myapplication-sql-%d.log.gz
archivedFileCount: 5

appenders:
- type: console

Name Default Description
level Level.INFO Logback logging level.
additive true Logback additive setting.
loggers (none) Individual logger configuration (both forms are acceptable).
appenders (none) One of console, file or syslog.

18.5.1 Console

logging:
level: INFO
appenders:
- type: console
threshold: ALL
queueSize: 512
discardingThreshold: 0
timeZone: UTC
target: stdout
logFormat: "%-5p [%d{ISO8601,UTC}] %c: %m%n%rEx"
filterFactories:

- type: URI

142 Chapter 18. Dropwizard Configuration Reference

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Name Default Description
type RE-

QUIRED
The appender type. Must be console.

thresh-
old

ALL The lowest level of events to print to the console.

queue-
Size

256 The maximum capacity of the blocking queue.

dis-
card-
ingTh-
resh-
old

-1 When the blocking queue has only the capacity mentioned in discardingThreshold remain-
ing, it will drop events of level TRACE, DEBUG and INFO, keeping only events of level
WARN and ERROR. If no discarding threshold is specified (-1), then a default of queueSize
/ 5 (logback’s default ratio) is used. To keep all events, set discardingThreshold to 0.

time-
Zone

UTC The time zone to which event timestamps will be converted. To use the system/default time
zone, set it to system.

tar-
get

stdout The name of the standard stream to which events will be written. Can be stdout or stderr.

log-
For-
mat

%-5p
[%d{ISO8601,UTC}]
%c:
%m%n%rEx

The Logback pattern with which events will be formatted. See the Logback documen-
tation for details. The default log pattern is `%h %l %u [%t{dd/MMM/yyyy:HH:mm:ss
Z,UTC}] "%r" %s %b "%i{Referer}" "%i{User-Agent}" %D`. Use the placeholder
%dwTimeZone to include the value of timeZone in the pattern.

fil-
ter-
Fac-
to-
ries

(none) The list of filters to apply to the appender, in order, after the threshold.

ne-
verBlock

false Prevent the wrapping asynchronous appender from blocking when its underlying queue is
full. Set to true to disable blocking.

18.5.2 File

logging:
level: INFO
appenders:
- type: file
currentLogFilename: /var/log/myapplication.log
threshold: ALL
queueSize: 512
discardingThreshold: 0
archive: true
archivedLogFilenamePattern: /var/log/myapplication-%d.log
archivedFileCount: 5
timeZone: UTC
logFormat: "%-5p [%d{ISO8601,UTC}] %c: %m%n%rEx"
bufferSize: 8KiB
immediateFlush: true
filterFactories:

- type: URI

18.5. Logging 143

http://logback.qos.ch/manual/layouts.html#conversionWord

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Name Default Description
type RE-

QUIRED
The appender type. Must be file.

cur-
rent-
Log-
File-
name

RE-
QUIRED

The filename where current events are logged.

thresh-
old

ALL The lowest level of events to write to the file.

queue-
Size

256 The maximum capacity of the blocking queue.

dis-
card-
ingTh-
resh-
old

-1 When the blocking queue has only the capacity mentioned in discardingThreshold remain-
ing, it will drop events of level TRACE, DEBUG and INFO, keeping only events of level
WARN and ERROR. If no discarding threshold is specified (-1), then a default of queueSize
/ 5 (logback’s default ratio) is used. To keep all events, set discardingThreshold to 0.

archive true Whether or not to archive old events in separate files.
archived-
Log-
File-
namePat-
tern

(none) Required if archive is true. The filename pattern for archived files. If maxFileSize is
specified, rollover is size-based, and the pattern must contain %i for an integer index of the
archived file. Otherwise rollover is date-based, and the pattern must contain %d, which is
replaced with the date in yyyy-MM-dd form. If the pattern ends with .gz or .zip, files will
be compressed as they are archived.

archived-
File-
Count

5 The number of archived files to keep. Must be greater than or equal to 0. Zero is a special
value signifying to keep infinite logs (use with caution)

max-
File-
Size

(unlim-
ited)

The maximum size of the currently active file before a rollover is triggered. The value can be
expressed in bytes, kibibytes, kilobytes, mebibytes, megabytes, gibibytes, gigabytes, tebibytes,
terabytes, pebibytes, and petabytes by appending B, KiB, KB, MiB, MB, GiB, GB, TiB, TB,
PiB, or PB to the numeric value. Examples include 5KiB, 100MiB, 1GiB, 1TB. Sizes can
also be spelled out, such as 5 kibibytes, 100 mebibytes, 1 gibibyte, 1 terabyte.

total-
Size-
Cap

(unlim-
ited)

Controls the total size of all files. Oldest archives are deleted asynchronously when the total
size cap is exceeded.

time-
Zone

UTC The time zone to which event timestamps will be converted.

log-
For-
mat

%-5p
[%d{ISO8601,UTC}]
%c:
%m%n%rEx

The Logback pattern with which events will be formatted. See the Logback documen-
tation for details. The default log pattern is `%h %l %u [%t{dd/MMM/yyyy:HH:mm:ss
Z,UTC}] "%r" %s %b "%i{Referer}" "%i{User-Agent}" %D`. Use the placeholder
%dwTimeZone to include the value of timeZone in the pattern.

filter-
Fac-
tories

(none) The list of filters to apply to the appender, in order, after the threshold.

ne-
verBlock

false Prevent the wrapping asynchronous appender from blocking when its underlying queue is full.
Set to true to disable blocking.

buffer-
Size

8KiB The buffer size of the underlying FileAppender (setting added in logback 1.1.10). Increasing
this from the default of 8KiB to 256KiB is reported to significantly reduce thread contention.

im-
me-
diate-
Flush

true If set to true, log events will be immediately flushed to disk. Immediate flushing is safer, but
it degrades logging throughput.

144 Chapter 18. Dropwizard Configuration Reference

http://logback.qos.ch/manual/layouts.html#conversionWord

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

18.5.3 Syslog

logging:
level: INFO
appenders:
- type: syslog
host: localhost
port: 514
facility: local0
threshold: ALL
stackTracePrefix: \t
logFormat: "%-5p [%d{ISO8601,UTC}] %c: %m%n%rEx"
filterFactories:
- type: URI

Name Default Description
host localhost The hostname of the syslog server.
port 514 The port on which the syslog server is listening.
facil-
ity

local0 The syslog facility to use. Can be either auth, authpriv, daemon, cron, ftp, lpr,
kern, mail, news, syslog, user, uucp, local0, local1, local2, local3, local4,
local5, local6, or local7.

thresh-
old

ALL The lowest level of events to write to the file.

log-
For-
mat

%-5p
[%d{ISO8601,UTC}]
%c:
%m%n%rEx

The Logback pattern with which events will be formatted. See the Logback
documentation for details. The default log pattern is `%h %l %u [%t{dd/MMM/
yyyy:HH:mm:ss Z,UTC}] "%r" %s %b "%i{Referer}" "%i{User-Agent}"
%D`.

stack-
Tra-
cePre-
fix

t The prefix to use when writing stack trace lines (these are sent to the syslog server
separately from the main message)

filter-
Facto-
ries

(none) The list of filters to apply to the appender, in order, after the threshold.

ne-
verBlock

false Prevent the wrapping asynchronous appender from blocking when its underlying queue
is full. Set to true to disable blocking.

in-
clud-
eStack-
Trace

true Set to false to disable sending stack traces to the syslog service.

18.5.4 TCP

logging:
level: INFO
appenders:
- type: tcp
host: localhost
port: 4560
connectionTimeout: 500ms

(continues on next page)

18.5. Logging 145

http://logback.qos.ch/manual/layouts.html#conversionWord

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

immediateFlush: true
sendBufferSize: 8KiB

Name De-
fault

Description

host local-
host

The hostname of the TCP server.

port 4560 The port on which the TCP server is listening.
connection-
Timeout

500ms The timeout to connect to the TCP server.

immediate-
Flush

true If set to true, log events will be immediately send to the server Immediate flushing is safer,
but it degrades logging throughput.

sendBuffer-
Size

8KiB The buffer size of the underlying SocketAppender. Takes into effect if immediateFlush is
disabled.

18.5.5 UDP

logging:
level: INFO
appenders:
- type: udp
host: localhost
port: 514

Name Default Description
host localhost The hostname of the UDP server.
port 514 The port on which the UDP server is listening.

18.5.6 FilterFactories

A factory used for request logging appenders should implement io.dropwizard.logging.filter.
FilterFactory<IAccessEvent> while one used for regular logging should implement io.dropwizard.
logging.filter.FilterFactory<ILoggingEvent>. To register a factory, its fully qualified classname must
be listed in META-INF/services/io.dropwizard.logging.filter.FilterFactory. The factory then can
be referenced in the configuration either via its simple classname or via type name, if factory class annotated with
@JsonTypeName.

logging:
level: INFO
appenders:
- type: console
filterFactories:

- type: URI

Name Default Description
type REQUIRED The filter type name.

146 Chapter 18. Dropwizard Configuration Reference

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

18.5.7 JSON layout

layout:
type: json
timestampFormat: "yyyy-MM-dd'T'HH:mm:ss.SSSZ"
prettyPrint: false
appendLineSeparator: true
includes: [timestamp, threadName, level, loggerName, message, mdc, exception]
customFieldNames:
timestamp: "@timestamp"

additionalFields:
service-name: "user-service"

includesMdcKeys: [userId]
flattenMdc: true
exception:
rootFirst: true
depth: full
evaluators: [org.apache]

18.5. Logging 147

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Name Default Description
timestampFormat (none) By default, the timestamp is not

formatted. To customize how
timestamps are formatted, set
the property to the correspond-
ing DateTimeFormatter string
or one of the predefined for-
mats (e.g. ISO_LOCAL_TIME,
ISO_ZONED_DATE_TIME,
RFC_1123_DATE_TIME).

prettyPrint false Whether the JSON output should be
formatted for human readability.

appendLineSeparator true Whether to append a line separator
at the end of the message formatted
as JSON.

includes (timestamp, level, threadName,
mdc, loggerName, message, excep-
tion)

Set of logging event attributes to in-
clude in the JSON map:

• timestamp true Whether to
include the timestamp as the
timestamp field.

• level true Whether to in-
clude the logging level as the
level field.

• threadName true Whether to
include the thread name as the
thread field.

• mdc true Whether to include
the MDC properties as the
mdc field.

• loggerName true Whether to
include the logger name as the
logger field.

• message true Whether to in-
clude the formatted message
as the message field.

• exception true Whether to
log exceptions. If the property
enabled and there is an excep-
tion, it will be formatted to a
string as the exception field.

• contextName false Whether
to include the logging context
name as the context field .

customFieldNames (empty) Map of field name re-
placements . For example
(requestTime:request_time,
userAgent:user_agent).

additionalFields (empty) Map of fields to add in the JSON
map.

includesMdcKeys (empty) Set of MDC keys which should be
included in the JSON map. By de-
fault includes everything.

flattenMdc false Flatten the MDC to the root of the
JSON object instead of nested in the
mdc field.

exception (empty) The exception configuration for the
exception field.

148 Chapter 18. Dropwizard Configuration Reference

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Exception

layout:
type: json
exception:
rootFirst: false
depth: 25
evaluators: [org.apache]

Name Default Description
rootFirst true Whether the root cause should be displayed first.
depth full The stack trace depth.
evaluators (empty) The packages to filter from the stacktrace.

18.5.8 JSON access log layout

layout:
type: access-json
timestampFormat: "yyyy-MM-dd'T'HH:mm:ss.SSSZ"
prettyPrint: false
appendLineSeparator: true
includes: [timestamp, remoteAddress, remoteUser, protocol, method, requestUri,␣

→˓statusCode, requestTime, contentLength, userAgent]
requestHeaders:

- X-Request-Id
responseHeaders:

- X-Request-Id
requestAttributes:
- SomeAttributeName

customFieldNames:
timestamp: "@timestamp"

additionalFields:
service-name: "user-service"

18.5. Logging 149

https://logback.qos.ch/manual/layouts.html#ex
https://github.com/qos-ch/logback/pull/244

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Name Default Description
timestampFormat (none) By default, the timestamp is not

formatted. To customize how times-
tamps are formatted, set the property
to the corresponding DateTimeFor-
matter string or one of the predefined
formats (e.g. ISO_LOCAL_TIME,
ISO_ZONED_DATE_TIME,``RFC_1123_DATE_TIME``).

prettyPrint false Whether the JSON output should be
formatted for human readability.

appendLineSeparator true Whether to append a line separator
at the end of the message formatted
as JSON.

includes (timestamp, remoteAddress, proto-
col, method, requestUri, statusCode,
requestTime, contentLength, userA-
gent)

Set of logging event attributes to in-
clude in the JSON map:

• contentLength true
Whether to include the
response content length,
if it’s known as the
contentLength field.

• method true Whether to
include the request HTTP
method as the method field.

• remoteAddress true
Whether to include the
IP address of the client or last
proxy that sent the request as
the remoteAddress field.

• remoteUser true Whether
to include information about
the remote user as the
remoteUser field.

• requestTime true Whether
to include the time elapsed
between receiving the re-
quest and logging it as the
requestTime field. Time is
in ms.

• requestUri true Whether to
include the URI of the request
as the uri field.

• statusCode true Whether to
include the status code of the
response as the status field.

• protocol true Whether to in-
clude the request HTTP proto-
col as the protocol field.

• timestamp true Whether to
include the timestamp of the
event the timestamp field.

• userAgent true Whether to
include the user agent of the
request as the userAgent
field.

• requestParameters false
Whether to include the
request parameters as the
params field.

• requestContent false
Whether to include the
body of the request as the
requestContent field.
Must register the TeeFilter to
be effective.

• requestUrl false Whether
to include the request URL
(method, URI, query parame-
ters, protocol) as the url field.

• pathQuery false Whether to
include the URI and query pa-
rameters of the request as the
pathQuery field.

• remoteHost false Whether
to include the fully qualified
name of the client or the last
proxy that sent the request as
the remoteHost field.

• responseContent false
Whether to include the
response body as the
responseContent field.
Must register the TeeFilter to
be effective.

• serverName false Whether to
include the name of the server
to which the request was sent
as the serverName field.

requestHeaders (empty) Set of request headers included in
the JSON map as the headers field.

responseHeaders (empty) Set of response headers in-
cluded in the JSON map as the
responseHeaders field.

requestAttributes (empty) Set of ServletRequest attributes in-
cluded in the JSON map as the
requestAttributes field.

customFieldNames (empty) Map of field name replacements
in the JSON map. For example
requestTime:request_time,
userAgent:user_agent).

additionalFields (empty) Map of fields to add in the JSON
map.

150 Chapter 18. Dropwizard Configuration Reference

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://github.com/dropwizard/dropwizard/issues/2045#issuecomment-299149563
https://logback.qos.ch/access.html#teeFilter
https://github.com/dropwizard/dropwizard/issues/2045#issuecomment-299149563
https://logback.qos.ch/access.html#teeFilter

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

18.6 Metrics

The metrics configuration has three fields; frequency, reporters and reportOnStop.

metrics:
frequency: 1 minute
reporters:
- type: <type>

reportOnStop: false

Name Default Description
frequency 1 minute The frequency to report metrics. Overridable per-reporter.
reporters (none) A list of reporters to report metrics.
reportOnStop false To report metrics one last time when stopping Dropwizard.

18.6.1 All Reporters

The following options are available for all metrics reporters.

metrics:
reporters:
- type: <type>
durationUnit: milliseconds
rateUnit: seconds
excludes: (none)
includes: (all)
excludesAttributes: (none)
includesAttributes: (all)
useRegexFilters: false
frequency: 1 minute

18.6. Metrics 151

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Name De-
fault

Description

durationUnit mil-
lisec-
onds

The unit to report durations as. Overrides per-metric duration units.

rateUnit sec-
onds

The unit to report rates as. Overrides per-metric rate units.

excludes (none) Metrics to exclude from reports, by name. When defined, matching metrics will not be
reported.

includes (all) Metrics to include in reports, by name. When defined, only these metrics will be re-
ported.

excludesAt-
tributes

(none) Metric attributes to exclude from reports, by name (e.g. p98, m15_rate, stddev).
When defined, matching metrics attributes will not be reported.

includesAt-
tributes

(all) Metrics attributes to include in reports, by name (e.g. p98, m15_rate, stddev). When
defined, only these attributes will be reported.

useRegexFil-
ters

false Indicates whether the values of the ‘includes’ and ‘excludes’ fields should be treated as
regular expressions or not.

useSub-
stringMatch-
ing

false Uses a substring matching strategy to determine whether a metric should be processed.

frequency (none) The frequency to report metrics. Overrides the default.

The inclusion and exclusion rules are defined as:

• If includes is empty, then all metrics are included;

• If includes is not empty, only metrics from this list are included;

• If excludes is empty, no metrics are excluded;

• If excludes is not empty, then exclusion rules take precedence over inclusion rules. Thus if a name matches the
exclusion rules it will not be included in reports even if it also matches the inclusion rules.

When neither useRegexFilters nor useSubstringMatching are enabled, a default exact matching strategy will be used
to determine whether a metric should be processed. In case both useRegexFilters and useSubstringMatching are set,
useRegexFilters takes precedence over useSubstringMatching.

Formatted Reporters

These options are available only to “formatted” reporters and extend the options available to all reporters

metrics:
reporters:
- type: <type>
locale: <system default>

Name Default Description
locale System default The Locale for formatting numbers, dates and times.

152 Chapter 18. Dropwizard Configuration Reference

http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

18.6.2 Console Reporter

Reports metrics periodically to the console.

Extends the attributes that are available to formatted reporters

metrics:
reporters:
- type: console
timeZone: UTC
output: stdout

Name Default Description
timeZone UTC The timezone to display dates/times for.
output stdout The stream to write to. One of stdout or stderr.

18.6.3 CSV Reporter

Reports metrics periodically to a CSV file.

Extends the attributes that are available to formatted reporters

metrics:
reporters:
- type: csv
file: /path/to/file

Name Default Description
file No default The CSV file to write metrics to.

18.6.4 Graphite Reporter

Reports metrics periodically to Graphite.

Extends the attributes that are available to all reporters

Note: You will need to add dropwizard-metrics-graphite to your POM.

metrics:
reporters:
- type: graphite
host: localhost
port: 2003
prefix: <prefix>
transport: tcp

18.6. Metrics 153

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Name Default Description
host localhost The hostname of the Graphite server to report to.
port 2003 The port of the Graphite server to report to.
prefix (none) The prefix for Metric key names to report to Graphite.
transport tcp The type of transport to report to Graphite with (“tcp” or “udp”).

18.6.5 SLF4J

Reports metrics periodically by logging via SLF4J.

Extends the attributes that are available to all reporters

See BaseReporterFactory and BaseFormattedReporterFactory for more options.

metrics:
reporters:
- type: log
logger: metrics
markerName: <marker name>

Name Default Description
logger metrics The name of the logger to write metrics to.
markerName (none) The name of the marker to mark logged metrics with.

18.7 Clients

18.7.1 HttpClient

See HttpClientConfiguration for more options.

httpClient:
timeout: 500ms
connectionTimeout: 500ms
timeToLive: 1h
cookiesEnabled: false
maxConnections: 1024
maxConnectionsPerRoute: 1024
keepAlive: 0ms
retries: 0
userAgent: <application name> (<client name>)

154 Chapter 18. Dropwizard Configuration Reference

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-metrics/src/main/java/io/dropwizard/metrics/BaseReporterFactory.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-metrics/src/main/java/io/dropwizard/metrics/BaseFormattedReporterFactory.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/HttpClientConfiguration.java

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Name Default Description
timeout 500 millisec-

onds
The maximum idle time for a connection, once established.

connec-
tionTime-
out

500 millisec-
onds

The maximum time to wait for a connection to open.

connec-
tionRe-
questTime-
out

500 millisec-
onds

The maximum time to wait for a connection to be returned from the connection
pool.

timeToLive 1 hour The maximum time a pooled connection can stay idle (not leased to any thread)
before it is shut down.

cookiesEn-
abled

false Whether or not to enable cookies.

maxCon-
nections

1024 The maximum number of concurrent open connections.

maxCon-
nection-
sPerRoute

1024 The maximum number of concurrent open connections per route.

keepAlive 0 millisec-
onds

The maximum time a connection will be kept alive before it is reconnected. If set
to 0, connections will be immediately closed after every request/response.

retries 0 The number of times to retry failed requests. Requests are only retried if they throw
an exception other than InterruptedIOException, UnknownHostException,
ConnectException, or SSLException.

userAgent applicationName
(clientName)

The User-Agent to send with requests.

validateAf-
terInactivi-
tyPeriod

0 millisec-
onds

The maximum time before a persistent connection is checked to remain active. If
set to 0, no inactivity check will be performed.

Proxy

httpClient:
proxy:
host: 192.168.52.11
port: 8080
scheme : http
auth:
username: secret
password: stuff
authScheme: NTLM
realm: realm
hostname: host
domain: WINDOWSDOMAIN
credentialType: NT

nonProxyHosts:
- localhost
- '192.168.52.*'
- '*.example.com'

18.7. Clients 155

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Name De-
fault

Description

host RE-
QUIRED

The proxy server host name or ip address.

port (scheme
default)

The proxy server port. If the port is not set then the scheme default port is used.

scheme http The proxy server URI scheme. HTTP and HTTPS schemas are permitted. By default HTTP
scheme is used.

auth (none) The proxy server Basic or NTLM authentication schemes. If they are not set then no credentials
will be passed to the server.

user-
name

RE-
QUIRED

The username used to connect to the server.

pass-
word

RE-
QUIRED

The password used to connect to the server.

auth-
Scheme

Basic The authentication scheme used by the. Allowed options are: Basic, NTLM

realm (none) The realm, used for NTLM authentication.
host-
name

(none) The hostname of the windows workstation, used for NTLM authentication.

do-
main

(none) The Windows Domain, used for NTLM authentication.

cre-
den-
tial-
Type

(none) The Apache HTTP Client Credentials implementation used for proxy authentication. Allowed
options are: UsernamePassword or NT

non-
Proxy-
Hosts

(none) List of patterns of hosts that should be reached without proxy. The patterns may contain symbol
‘*’ as a wildcard. If a host matches one of the patterns it will be reached through a direct
connection.

TLS

httpClient:
tls:
protocol: TLSv1.2
provider: SunJSSE
verifyHostname: true
keyStorePath: /path/to/file
keyStorePassword: changeit
keyStoreType: JKS
trustStorePath: /path/to/file
trustStorePassword: changeit
trustStoreType: JKS
trustSelfSignedCertificates: false
supportedProtocols: TLSv1.1,TLSv1.2
supportedCipherSuites: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
certAlias: alias-of-specific-cert

156 Chapter 18. Dropwizard Configuration Reference

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Name De-
fault

Description

protocol TLSv1.2The default protocol the client will attempt to use during the SSL Handshake. See here for
more information.

provider (none) The name of the JCE provider to use on client side for cryptographic support (for example,
SunJCE, Conscrypt, BC, etc). See Oracle documentation for more information.

verifyHost-
name

true Whether to verify the hostname of the server against the hostname presented in the server
certificate.

keyStorePath (none) The path to the Java key store which contains the client certificate and private key.
keyStorePass-
word

(none) The password used to access the key store.

keyStoreType JKS The type of key store (usually JKS, PKCS12, JCEKS, Windows-MY, or Windows-ROOT).
trust-
StorePath

(none) The path to the Java key store which contains the CA certificates used to establish trust.

trust-
StorePass-
word

(none) The password used to access the trust store.

trustStore-
Type

JKS The type of trust store (usually JKS, PKCS12, JCEKS, Windows-MY, or Windows-ROOT).

trustSelf-
SignedCer-
tificates

false If true, will trust all self-signed certificates regardless of trustStore settings. If false, trust
decisions will be handled by the supplied trustStore.

supported-
Protocols

(none) A list of protocols (e.g., SSLv3, TLSv1) which are supported. All other protocols will be
refused.

supportedCi-
pherSuites

(none) A list of cipher suites (e.g., TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256) which are
supported. All other cipher suites will be refused.

certAlias (none) The alias of a specific client certificate to present when authenticating. Use this when the
specified keystore has multiple certificates to force use of a non-default certificate.

18.7.2 JerseyClient

Extends the attributes that are available to http clients

See JerseyClientConfiguration and HttpClientConfiguration for more options.

jerseyClient:
minThreads: 1
maxThreads: 128
workQueueSize: 8
gzipEnabled: true
gzipEnabledForRequests: true
chunkedEncodingEnabled: true

18.7. Clients 157

http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#SSLContext
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/JerseyClientConfiguration.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/HttpClientConfiguration.java

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Name De-
fault

Description

minThreads1 The minimum number of threads in the pool used for asynchronous requests.
max-
Threads

128 The maximum number of threads in the pool used for asynchronous requests. If asynchronous
requests made by jersey client while serving requests, the number must be set according to the
maxThread setting of the server. Otherwise some requests made to dropwizard on heavy load
may fail due to congestion on the jersey client’s thread pool.

workQueue-
Size

8 The size of the work queue of the pool used for asynchronous requests. Additional threads will be
spawn only if the queue is reached its maximum size.

gzipEn-
abled

true Adds an Accept-Encoding: gzip header to all requests, and enables automatic gzip decoding of
responses.

gzipEn-
abled-
ForRe-
quests

true Adds a Content-Encoding: gzip header to all requests, and enables automatic gzip encoding of
requests.

chun-
kedEn-
codin-
gEn-
abled

true Enables the use of chunked encoding for requests.

18.8 Database

database:
driverClass : org.postgresql.Driver
url: 'jdbc:postgresql://db.example.com/db-prod'
user: pg-user
password: iAMs00perSecrEET

Name Default Description
driverClass REQUIRED The full name of the JDBC driver class.
url REQUIRED The URL of the server.
user none The username used to connect to the server.
password none The password used to connect to the server.
removeAbandoned false Remove abandoned connections if they exceed removeAbandonedTimeout. If set to true a connection is considered abandoned and eligible for removal if it has been in use longer than the removeAbandonedTimeout and the condition for abandonWhenPercentageFull is met.
removeAbandonedTimeout 60 seconds The time before a database connection can be considered abandoned.
abandonWhenPercentageFull 0 Connections that have been abandoned (timed out) won’t get closed and reported up unless the number of connections in use are above the percentage defined by abandonWhenPercentageFull. The value should be between 0-100.
alternateUsernamesAllowed false Set to true if the call getConnection(username,password) is allowed. This is used for when the pool is used by an application accessing multiple schemas. There is a performance impact turning this option on, even when not used.
commitOnReturn false Set to true if you want the connection pool to commit any pending transaction when a connection is returned.
rollbackOnReturn false Set to true if you want the connection pool to rollback any pending transaction when a connection is returned.
autoCommitByDefault JDBC driver’s default The default auto-commit state of the connections.
readOnlyByDefault JDBC driver’s default The default read-only state of the connections.
properties none Any additional JDBC driver parameters.
defaultCatalog none The default catalog to use for the connections.
defaultTransactionIsolation JDBC driver’s default The default transaction isolation to use for the connections. Can be one of none, default, read-uncommitted, read-committed, repeatable-read, or serializable.
useFairQueue true If true, calls to getConnection are handled in a FIFO manner.
initialSize 10 The initial size of the connection pool.
minSize 10 The minimum size of the connection pool.

continues on next page

158 Chapter 18. Dropwizard Configuration Reference

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

Table 1 – continued from previous page
Name Default Description
maxSize 100 The maximum size of the connection pool.
initializationQuery none A custom query to be run when a connection is first created.
logAbandonedConnections false If true, logs stack traces of abandoned connections.
logValidationErrors false If true, logs errors when connections fail validation.
maxConnectionAge none If set, connections which have been open for longer than maxConnectionAge are closed when returned.
maxWaitForConnection 30 seconds If a request for a connection is blocked for longer than this period, an exception will be thrown.
minIdleTime 1 minute The minimum amount of time an connection must sit idle in the pool before it is eligible for eviction.
validationQuery SELECT 1 The SQL query that will be used to validate connections from this pool before returning them to the caller or pool. If specified, this query does not have to return any data, it just can’t throw a SQLException.(FireBird will throw exception unless validationQuery set to select 1 from rdb$database)
validationQueryTimeout none The timeout before a connection validation queries fail.
checkConnectionWhileIdle true Set to true if query validation should take place while the connection is idle.
checkConnectionOnBorrow false Whether or not connections will be validated before being borrowed from the pool. If the connection fails to validate, it will be dropped from the pool, and another will be borrowed.
checkConnectionOnConnect false Whether or not connections will be validated before being added to the pool. If the connection fails to validate, it won’t be added to the pool.
checkConnectionOnReturn false Whether or not connections will be validated after being returned to the pool. If the connection fails to validate, it will be dropped from the pool.
autoCommentsEnabled true Whether or not ORMs should automatically add comments.
evictionInterval 5 seconds The amount of time to sleep between runs of the idle connection validation, abandoned cleaner and idle pool resizing.
validationInterval 30 seconds To avoid excess validation, only run validation once every interval.
validatorClassName none Name of a class of a custom validator implementation, which will be used for validating connections.
jdbcInterceptors none A semicolon separated list of JDBC interceptor classnames.
ignoreExceptionOnPreLoad false Flag whether ignore error of connection creation while initializing the pool. Set to true if you want to ignore error of connection creation while initializing the pool. Set to false if you want to fail the initialization of the pool by throwing exception.

18.9 Polymorphic configuration

The dropwizard-configuration module provides you with a polymorphic configuration mechanism,
meaning that a particular section of your configuration file can be implemented using one or more
configuration classes.

To use this capability for your own configuration classes, create a top-level configuration interface or class that
implements Discoverable and add the name of that class to META-INF/services/io.dropwizard.jackson.
Discoverable. Make sure to use Jackson polymorphic deserialization annotations appropriately.

@JsonTypeInfo(use = Id.NAME, include = As.PROPERTY, property = "type")
interface WidgetFactory extends Discoverable {

Widget createWidget();
}

Then create subtypes of the top-level type corresponding to each alternative, and add their names to META-INF/
services/WidgetFactory.

@JsonTypeName("hammer")
public class HammerFactory implements WidgetFactory {

@JsonProperty
private int weight = 10;

@Override
public Hammer createWidget() {

return new Hammer(weight);
}

}

(continues on next page)

18.9. Polymorphic configuration 159

http://wiki.fasterxml.com/JacksonPolymorphicDeserialization

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

@JsonTypeName("chisel")
public class ChiselFactory implements WidgetFactory {

@JsonProperty
private float radius = 1;

@Override
public Chisel createWidget() {

return new Chisel(radius);
}

}

Now you can use WidgetFactory objects in your application’s configuration.

public class MyConfiguration extends Configuration {
@JsonProperty
@NotNull
@Valid
private List<WidgetFactory> widgets;

}

widgets:
- type: hammer
weight: 20

- type: chisel
radius: 0.4

See testing configurations for details on ensuring the configuration will be deserialized correctly.

160 Chapter 18. Dropwizard Configuration Reference

CHAPTER

NINETEEN

DROPWIZARD INTERNALS

You already read through the whole Dropwizard documentation? Congrats! Then you are ready to have a look into
some nitty-gritty details of Dropwizard.

19.1 Startup Sequence

Application<T extends Configuration> is the “Main” class of a Dropwizard Application.

application.run(args) is the first method to be called on startup - Here is a simplified code snippet of its imple-
mentation:

public void run(String... arguments) throws Exception {

final Bootstrap<T> bootstrap = new Bootstrap<>(this);
bootstrap.addCommand(new ServerCommand<>(this));
bootstrap.addCommand(new CheckCommand<>(this));

initialize(bootstrap); // -- implemented by you; it should call:
// 1. add bundles (typically being used)
// 2. add commands (if any)

// Should be called after `initialize` to give an opportunity to set a custom metric␣
→˓registry
bootstrap.registerMetrics(); // start tracking some default jvm params...

// for each cmd, configure parser w/ cmd
final Cli cli = new Cli(new JarLocation(getClass()), bootstrap, our, err)
cli.run(arguments);

}

Bootstrap is the pre-start (temp) application environment, containing everything required to bootstrap a Dropwizard
command. Here is a simplified code snippet to illustrate its structure:

Bootstrap(application: Application<T>) {
this.application = application;
this.objectMapper = Jackson.newObjectMapper();
this.bundles = new ArrayList<>();
this.configuredBundles = new ArrayList<>();
this.commands = new ArrayList<>();
this.validatorFactory = Validators.newValidatorFactory();

(continues on next page)

161

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

(continued from previous page)

this.metricRegistry = new MetricRegistry();
this.classLoader = Thread.currentThread().getContextClassLoader();
this.configurationFactory = new DefaultConfigurationFactoryFactory<>();
this.healthCheckRegistry = new HealthCheckRegistry();

}

Environment is a longer-lived object, holding Dropwizard’s Environment (not env. Such as dev or prod). It holds a
similar, but somewhat different set of properties than the Bootstrap object - here is a simplified code snippet to illustrate
that:

Environment (...) {
// from bootstrap
this.objectMapper = ...
this.classLoader = ...
this.metricRegistry = ...
this.healthCheckRegistry = ...
this.validator = bootstrap.getValidatorFactory().getValidator()

// extra:
this.bundles = new ArrayList<>();
this.configuredBundles = new ArrayList<>();

// sub-environments:
this.servletEnvironment = ... // -- exposed via the servlets() method
this.jerseyEnvironment = ... // -- exposed via the jersey() method
this.adminEnvironment = ... // -- exposed via the admin() method

}

A Dropwizard Bundle is a reusable group of functionality (sometimes provided by the Dropwizard project itself), used
to define blocks of an application’s behavior. For example, AssetBundle from the dropwizard-assets module provides
a simple way to serve static assets from your application’s src/main/resources/assets directory as files available from
/assets/* (or any other path) in your application.

A ConfiguredBundle is a bundle that requires a configuration provided by the Configuration object (implementing
a relevant interface)

Properties such as database connection details should not be stored on the Environment; that is what your Configuration
.yml file is for. Each logical environment (dev/test/staging/prod) - would have its own Configuration .yml - reflecting
the differences between different “server environments”.

19.1.1 Commands

Command objects are basic actions, which Dropwizard runs based on the arguments provided on the command line. The
built-in server command, for example, spins up an HTTP server and runs your application. Each Command subclass
has a name and a set of command line options which Dropwizard will use to parse the given command line arguments.
The check command parses and validates the application’s configuration.

If you will check again the first code snippet in this document - you will see creating these two commands, is the first
step in the bootstrapping process.

Another important command is db - allowing executing various db actions, see Dropwizard Migrations

Similar to ConfiguredBundle, some commands require access to configuration parameters and should extend the
ConfiguredCommand class, using your application’s Configuration class as its type parameter.

162 Chapter 19. Dropwizard Internals

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

19.1.2 The CLI class

Let us begin with a simplified version of the constructor:

public Cli(location : JarLocation, bootstrap : Bootstrap<?>,
stdOut: OutputStream, stdErr: OutputStream) {

this.stdout = stdOut; this.stdErr = stdErr;
this.commands = new TreeMap<>();
this.parser = buildParser(location);
this.bootstrap = bootstrap;
for (command in bootstrap.commands) {

addCommand(command)
}

}

Cli is the command-line runner for Dropwizard application. Initializing, and then running it - is the last step of the
Bootstrapping process.

Run would just handle commandline args (–help, –version) or runs the configured commands. E.g. - When running
the server command:

java -jar target/hello-world-0.0.1-SNAPSHOT.jar server hello-world.yml

Just note the two basic commands are built of a parent, and a sub-class:

class CheckCommand<T extends Configuration> extends ConfiguredCommand<T>
class ServerCommand<T extends Configuration> extends EnvironmentCommand<T>

The order of operations is therefore:

1. Parse cmdline args, determine sub-command.

2. Run ConfiguredCommand, which get a parameter with the location of a YAML configuration file - parses and
validates it.

3. CheckCommand.run() runs next, and does almost nothing: it logs "Configuration is OK"

4. Run EnvironmentCommand:

a) Create Environment

b) Calls bootstrap.run(cfg, env) - run bundles with config. & env.

c) Bundles run in FIFO order.

d) Calls application.run(cfg, env) – implemented by you

6. Now, ServerCommand.run() runs

a) Calls serverFactory.build(environment) - to configure Jetty and Jersey, with all relevant Dropwizard
modules.

b) Starts Jetty.

19.1. Startup Sequence 163

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

19.2 Jetty Lifecycle

If you have a component of your app that needs to know when Jetty is going to start, you can implement Managed as
described in the Dropwizard docs.

If you have a component that needs to be signaled that Jetty has started (this happens after all Managed objects’ start()
methods are called), you can register with the env’s lifecycle like:

env.lifecycle().addServerLifecycleListener(new ServerLifecycleListener() {
@Override
public void serverStarted(Server server) {

/// ... do things here
}

});

164 Chapter 19. Dropwizard Internals

CHAPTER

TWENTY

CONTRIBUTORS

Dropwizard wouldn’t exist without the hard work contributed by numerous individuals.

Many, many thanks to:

• _ Kilemensi

• Aaron Curley

• Aaron Ingram

• Adam Jordens

• Adam Jordens

• Adam Marcus

• Adrian Suarez

• afrin216

• aharin

• Aidan

• Akhilesh Tyagi

• akumlehn

• Al Scott

• Alex Ausch

• Alex Butler

• Alex Heneveld

• Alex Katlein

• Alex Shpak

• Alexander von Renteln

• Alexey Gavrilov

• alexey-wg2

• Alice Chen

• Amr Youssef

• Anders Hedström

• Anders Jansson

165

https://github.com/kilemensi
https://github.com/accwebs
https://github.com/aingram
https://github.com/adamjordens
https://github.com/ajordens
https://github.com/marcua
https://github.com/adriansuarez
https://github.com/afrin216
https://github.com/aharin
https://github.com/mcgin
https://github.com/tyagiakhilesh
https://github.com/akumlehn
https://github.com/scottaj
https://github.com/aausch
https://github.com/alexheretic
https://github.com/ahgittin
https://github.com/vemilyus
https://github.com/alex-shpak
https://github.com/herrphon
https://github.com/agavrilov76
https://github.com/alexey-wg2
https://github.com/chena
https://github.com/amr
https://github.com/andershedstrom
https://github.com/aaanders

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

• Andreas Petersson

• Andreas Stührk

• Andrei Savu

• Andrew Clay Shafer

• Andrzej Kurzeja

• Anna Goncharova

• Anna G

• Anthony Milbourne

• Anthony Wat

• Arien Kock

• Armando Singer

• Artem Grankin

• Artem Prigoda

• arunh

• Bakary DJIBA

• Bart Hanssens

• Bartek Szymański

• Basil James Whitehouse III

• Ben Bader

• Ben Blackmore

• Ben Scholl

• Ben Smith

• Benjamin Bentmann

• Benny Zlotnik

• Bo Gotthardt

• BoatMisser

• Boyd Meier

• Brandon Beck

• Brent Ryan

• Brett Hoerner

• Brian Demers

• Brian McCallister

• Brian O’Neill

• Brian Vosburgh

• Brock Mills

• Bruce Ritchie

166 Chapter 20. Contributors

https://github.com/apetersson
https://github.com/Trundle
https://github.com/andreisavu
https://github.com/littleidea
https://github.com/AnDyXX
https://github.com/agoncharova
https://github.com/anna1go
https://github.com/ant3
https://github.com/acwwat
https://github.com/arienkock
https://github.com/asinger
https://github.com/muRn
https://github.com/arteam
https://github.com/arunh
https://github.com/dialaya
https://github.com/barthanssens
https://github.com/draakhan
https://github.com/basil3whitehouse
https://github.com/benjamin-bader
https://github.com/bripkens
https://github.com/BenScholl
https://github.com/thesmith
https://github.com/bentmann
https://github.com/bennyz
https://github.com/Lugribossk
https://github.com/boatmisser
https://github.com/bwmeier
https://github.com/bbeck
https://github.com/brentryan
https://github.com/bretthoerner
https://github.com/bdemers
https://github.com/brianm
https://github.com/boneill42
https://github.com/brian-vosburgh
https://github.com/stringy05
https://github.com/Omega1

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

• Bryan Burkholder

• Burak Dede

• BusComp

• Børge Nese

• Cagatay Kavukcuoglu

• Camille Fournier

• Carl Lerche

• Carlo Barbara

• Carter Kozak

• Cemalettin Koc

• Chad Selph

• Charlie Greenbacker

• Charlie La Mothe

• cheddar

• Chen W

• Chengdu Huang

• Chris Hawley

• Chris Micali

• Chris Pimlott

• Chris Tierney

• Christoffer Eide

• Christoph Kutzinski

• Christopher Cudennec

• Christopher Currie

• Christopher Currie

• Christopher Elkins

• cleiner

• Coda Hale

• Colin Armstrong

• Collin Van Dyck

• contextshuffling

• Cory Wilbur

• Craig P. Motlin

• Csaba Palfi

• dabraham02124

• Dale Wijnand

167

https://github.com/bryanlb
https://github.com/burakdede
https://github.com/BusComp
https://github.com/bnese
https://github.com/tinkerware
https://github.com/skamille
https://github.com/carllerche
https://github.com/carlo-rtr
https://github.com/carterkozak
https://github.com/cemo
https://github.com/chadselph
https://github.com/charlieg
https://github.com/clamothe
https://github.com/cheddar
https://github.com/cwang
https://github.com/douzzi
https://github.com/cjhawley
https://github.com/cmicali
https://github.com/pimlottc
https://github.com/BCctierney
https://github.com/eiden
https://github.com/kutzi
https://github.com/christopher-cudennec
https://github.com/christophercurrie
https://github.com/umcodemonkey
https://github.com/celkins
https://github.com/cleiner
https://github.com/codahale
https://github.com/colin-armstrong
https://github.com/collinvandyck
https://github.com/contextshuffling
https://github.com/cwilbur12
https://github.com/motlin
https://github.com/csabapalfi
https://github.com/dabraham02124
https://github.com/dwijnand

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

• Damian Pawlowski

• Dan Everton

• dan mcweeney

• Dan Peterström

• Dang Nguyen Anh Khoa

• Daniel

• Daniel Correia

• Daniel Temme

• Darren Yin

• David Ehrmann

• David Harris

• David Illsley

• David Martin

• David Morgantini

• David Nicholas Williams

• David Stendardi

• Denny Abraham Cheriyan

• Derek Cicerone

• Derek Stainer

• Devin Breen

• Dheerendra Rathor

• Dietrich Featherston

• Dimitris Zavaliadis

• Dmitry Minkovsky

• Dmitry Ustalov

• dom farr

• Dominic Tootell

• Dominik Henneke

• Dominik Wagenknecht

• Drew Stephens

• Dylan Scott

• Eduardo Caceres

• egginbag

• Eike Nils Knopp

• Emeka Mosanya

• Emrullah YILDIRIM

168 Chapter 20. Contributors

https://github.com/profes
https://github.com/deverton
https://github.com/mcdan
https://github.com/danpeter
https://github.com/wakandan
https://github.com/lightswitch05
https://github.com/danielbcorreia
https://github.com/dmt
https://github.com/dareonion
https://github.com/ehrmann
https://github.com/toadzky
https://github.com/davidillsley
https://github.com/dmartinpro
https://github.com/dmorgantini
https://github.com/davnicwil
https://github.com/dstendardi
https://github.com/dennyac
https://github.com/derekcicerone
https://github.com/dstainer
https://github.com/ometa
https://github.com/DheerendraRathor
https://github.com/d2fn
https://github.com/dimzava
https://github.com/dminkovsky
https://github.com/dustalov
https://github.com/dominicfarr
https://github.com/tootedom
https://github.com/dhenneke
https://github.com/LeDominik
https://github.com/dinomite
https://github.com/dylanscott
https://github.com/nedcg
https://github.com/egginbag
https://github.com/eikenilsknopp
https://github.com/emeka
https://github.com/Sangaibisi

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

• eocantu

• Erik van Oosten

• EthanLozano

• Evan Jones

• Evan Meagher

• Ezra Epstein

• Felix

• Flemming Frandsen

• Florian Hirsch

• florinn

• Francisco Rojas

• Fred Deschenes

• Fredrik Sundberg

• Friso Vrolijken

• Frode Nerbråten

• Fábio Franco Uechi

• Gabe Henkes

• Gary Dusbabek

• Gautam Gupta

• Gireesh Sreepathi

• Glenn McAllister

• Graham O’Regan

• Grzegorz Rożniecki

• Guillaume Simard

• Gunnar Ahlberg

• Harry Howarth

• Henrik Hegardt

• Henrik S.

• Hernan Silberman

• Hrvoje Slaviček

• Hugo Gonçalves

• Håkan Jonson

• Ian Eure

• Ian Ferguson

• Ian White

• Igor Savin

169

https://github.com/eocantu
https://github.com/erikvanoosten
https://github.com/EthanLozano
https://github.com/evanj
https://github.com/evnm
https://github.com/eepstein
https://github.com/fexbraun
https://github.com/dren-dk
https://github.com/lefloh
https://github.com/florinn
https://github.com/frojasg
https://github.com/FredDeschenes
https://github.com/KingBuzzer
https://github.com/vrolijken
https://github.com/froden
https://github.com/fabito
https://github.com/ghenkes
https://github.com/gdusbabek
https://github.com/GautamGupta
https://github.com/gisripa
https://github.com/glennmcallister
https://github.com/grahamoregan
https://github.com/Xaerxess
https://github.com/GuiSim
https://github.com/gunnarahlberg
https://github.com/HarryEH
https://github.com/hheg
https://github.com/minisu
https://github.com/nanreh
https://github.com/slavus
https://github.com/hugogoncalves
https://github.com/hawkan
https://github.com/ieure
https://github.com/ianferguson
https://github.com/eonwhite
https://github.com/kibertoad

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

• Ilias Bartolini

• islasjuanp

• Jacek Jackowiak

• Jake Swenson

• James Morris

• James Alfei

• James Ward

• Jamie Furnaghan

• Jan Galinski

• Jan-Terje Sørensen

• Jared Stehler

• Jason

• Jason Clawson

• Jason Dunkelberger

• Jason Toffaletti

• Jasper Vandemalle

• Javier Campanini

• jduan

• Jeff Klukas

• Jelmer ter Wal

• Jerry-Carter

• Jilles Oldenbeuving

• Jochen Schalanda

• Joe Barnett

• Joe Lauer

• Joe Schmetzer

• Johan Wirde (@jwirde)

• Jon Radon

• Jonathan Haber

• Jonathan Halterman

• Jonathan Monette

• Jonathan Ruckwood

• Jonathan Welzel

• Jordan Moore

• Jordan Zimmerman

• Joshua Spiewak

170 Chapter 20. Contributors

https://github.com/iliasbartolini
https://github.com/islasjuanp
https://github.com/airborn
https://github.com/jakeswenson
https://github.com/RawToast
https://github.com/jamesalfei
https://github.com/jamesward
https://github.com/reines
https://github.com/jangalinski
https://github.com/jansoren
https://github.com/jaredstehler-cengage
https://github.com/dirkraft
https://github.com/jclawson
https://github.com/dirkraft
https://github.com/toffaletti
https://github.com/jasper-vandemalle
https://github.com/jmcampanini
https://github.com/jduan
https://github.com/jklukas
https://github.com/jelmerterwal
https://github.com/Jerry-Carter
https://github.com/ojilles
https://github.com/joschi
https://github.com/josephlbarnett
https://github.com/jjlauer
https://github.com/tumbarumba
https://github.com/wirde
https://github.com/JonMR
https://github.com/jhaber
https://github.com/jhalterman
https://github.com/jmoney
https://github.com/jon-ruckwood
https://github.com/jnwelzel
https://github.com/OneCricketeer
https://github.com/Randgalt
https://github.com/jspiewak

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

• Julien

• Justin Miller

• Justin Plock

• Jérémie Panzer

• Kamil Anikiej

• Kashyap Paidimarri

• Kirill Vlasov

• Konstantin Yegupov

• Koray Tugay

• Kristian Klette

• Kristian Schjelderup

• Krzysztof Mejka

• LeekAnarchism

• Leo Fernandes

• leoconco

• Lior Bar-On

• Lucas Pleß

• Lunfu Zhong

• maffe

• Magnus Reftel

• Maher Abuthraa

• Malte S. Stretz

• Manabu Matsuzaki

• Manuel Hegner

• Marcin Biegan

• Marcos Paulo Belasco de Almeida

• Marcus Höjvall

• Marius Volkhart

• Mark Elliot

• Mark Lilback

• Mark Reddy

• Mark Symons

• Mark Wolfe

• markez92

• Martin W. Kirst

• Matt Brown

171

https://github.com/neurodesign
https://github.com/justinrmiller
https://github.com/jplock
https://github.com/Athou
https://github.com/anikiej
https://github.com/kashyapp
https://github.com/kirill-vlasov
https://github.com/KonstantinYegupov
https://github.com/koraytugay
https://github.com/klette
https://github.com/kschjeld
https://github.com/kmejka
https://github.com/LeekAnarchism
https://github.com/leofernandesmo
https://github.com/leoconco
https://github.com/baronlior
https://github.com/derlucas
https://github.com/zhongl
https://github.com/maffe
https://github.com/reftel
https://github.com/mabuthraa
https://github.com/mss
https://github.com/matsumana
https://github.com/manuel-hegner
https://github.com/mabn
https://github.com/mpbalmeida
https://github.com/softarn
https://github.com/MariusVolkhart
https://github.com/markelliot
https://github.com/mlilback
https://github.com/markreddy
https://github.com/msymons
https://github.com/wolfeidau
https://github.com/markez92
https://github.com/nitram509
https://github.com/mattnworb

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

• Matt Carrier

• Matt Hurne

• Matt Nelson

• Matt Snider

• Matt Veitas

• Matt Whipple

• Matthew Clarke

• Matthew Dolan

• Matthew Simoneau

• Matthias Bläsing

• Matthias Müller

• Max Wenzin

• Maximilien Marie

• Michael Chaten

• Michael Fairley

• Michael McCarthy

• Michael Rice

• Michael Silvanovich

• Michal Rutkowski

• Michel Decima

• Michiel Leegwater

• Miguel Ángel Martín

• MikaelAmborn

• Mike Miller

• Mikhail Gromov

• Mohammad Nasir Rasul

• Moritz Halbritter (born Kammerer)

• Moxie Marlinspike

• Mårten Gustafson

• nanreh

• Nasir

• Natalie Zamani

• Natan Abolafya

• Nicholas Heitz

• Nick Babcock

• Nick Smith

172 Chapter 20. Contributors

https://github.com/mcarrierastonish
https://github.com/mhurne
https://github.com/mattnelson
https://github.com/matt-snider
https://github.com/mveitas
https://github.com/mwhipple
https://github.com/mclarke47
https://github.com/MatthewDolan
https://github.com/simoneau
https://github.com/matthiasblaesing
https://github.com/matthias-mueller
https://github.com/betrcode
https://github.com/akraxx
https://github.com/chaten
https://github.com/michaelfairley
https://github.com/mikeycmccarthy
https://github.com/mrice
https://github.com/Silvmike
https://github.com/velocipedist
https://github.com/lehcim
https://github.com/mleegwt
https://github.com/miguelbemartin
https://github.com/MikaelAmborn
https://github.com/mikemil
https://github.com/mgtriffid
https://github.com/mnrasul
https://github.com/phxql
https://github.com/moxie0
https://github.com/chids
https://github.com/nanreh
https://github.com/mnrasul
https://github.com/natalie-zamani
https://github.com/natnan
https://github.com/nheitz
https://github.com/nickbabcock
https://github.com/clickthisnick

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

• Nick Telford

• Nikhil Bafna

• Nikolaos Georgiou

• Nisarg Shah

• Oddmar Sandvik

• Oleg

• Oliver B. Fischer

• Olivier Abdesselam

• Olivier Chédru

• Olivier Grégoire

• Ori Schwartz

• Oscar Nalin Nilsson

• Otto Jongerius

• Owen Jacobson

• pandaadb

• Pablo Fernandez

• Patrick Stegmann

• Patryk Najda

• Paul Kenneth Kent

• Paul Samsotha

• Paul Tomlin

• Peter Sear

• Peter Stackle

• Peter Wippermann

• Philip K. Warren

• Philip Potter

• pkokush

• Punyashloka Biswal

• Qinfeng Chen

• Quoc-Viet Nguyen

• Rachel Normand

• Radoslav Petrov

• Rassul Yunussov

• RawToast

• Richard Kettelerij

• Richard Nyström

173

https://github.com/nicktelford
https://github.com/zodvik
https://github.com/ngeor
https://github.com/nisargshah95
https://github.com/oddmar
https://github.com/olegzzz
https://github.com/obfischer
https://github.com/yazgoo
https://github.com/ochedru
https://github.com/ogregoire
https://github.com/orischwartz
https://github.com/oscarnalin
https://github.com/ojongerius
https://github.com/ojacobson
https://github.com/pandaadb
https://github.com/fernandezpablo85
https://github.com/wonderb0lt
https://github.com/patrox
https://github.com/paulkennethkent
https://github.com/psamsotha
https://github.com/ptomli
https://github.com/petersear
https://github.com/pstackle
https://github.com/PeterWippermann
https://github.com/pkwarren
https://github.com/philandstuff
https://github.com/pavelkokush
https://github.com/punya
https://github.com/qinfchen
https://github.com/nqv
https://github.com/rnewstead1
https://github.com/zloster
https://github.com/RassulYunussov
https://github.com/RawToast
https://github.com/rkettelerij
https://github.com/ricn

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

• Robert Barbey

• Rohan Nagar

• Russell Howe

• Ryan Berdeen

• Ryan Kennedy

• Ryan Warren

• Rémi Alvergnat

• Rüdiger zu Dohna

• Sam Quigley

• Satoshi Tagomori

• Scott D.

• Sean Scanlon

• Sergio Escalante

• shail

• Sharath B. Patel

• shartte

• Shawn Smith

• Simon Collins

• Simon Dean

• Sjoerd Talsma

• Slava Korolev

• smolloy

• Sourav Mitra

• Stan Svec

• Steffen Nießing

• Stephen Huenneke

• Stephen Souness

• Steve Agalloco

• Steve Hill

• Steven Benitez

• Stevo Slavić

• Stuart Gunter

• sullis

• Suryatej Mukkamalla

• Szymon Pacanowski

• Tatsuya

174 Chapter 20. Contributors

https://github.com/rbarbey
https://github.com/RohanNagar
https://github.com/rhowe
https://github.com/also
https://github.com/ryankennedy
https://github.com/rwwarren
https://github.com/Toilal
https://github.com/t1
https://github.com/emerose
https://github.com/tagomoris
https://github.com/isaki
https://github.com/sps
https://github.com/sergioescala
https://github.com/shail
https://github.com/sharathsteel
https://github.com/shartte
https://github.com/shawnsmith
https://github.com/simoncollins
https://github.com/msmsimondean
https://github.com/sjoerdtalsma
https://github.com/slavadev
https://github.com/smolloy
https://github.com/souravmitra
https://github.com/StanSvec
https://github.com/zUniQueX
https://github.com/skastel
https://github.com/Sounie
https://github.com/stve
https://github.com/sghill
https://github.com/stevenbenitez
https://github.com/sslavic
https://github.com/stuartgunter
https://github.com/sullis
https://github.com/suryatej16
https://github.com/spacanowski
https://github.com/t-tsutsumi

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

• Tatu Saloranta

• Tatu Saloranta

• Ted Nyman

• terezivy

• Thiago Moretto

• Thomas Sundberg

• Tim Bart

• Tim Bartley

• Timothée Peignier

• Todd Bednarczyk

• Tom Akehurst

• Tom Crayford

• Tom Lee

• Tom Morris

• Tom Shen

• Tomas Crhak

• Tomasz Adamski

• Tony Gaetani

• Trevor Mack

• Tristan Buckner

• Tristan Burch

• twilson-palantir

• Tyrone Cutajar

• Vadim Spivak

• vanvlack

• Varun Loiwal

• Vasyl Vavrychuk

• Victor Noël

• Vitor Reis

• Vladimir Ladynev

• Vojtěch Vondra

• vzx

• Will Sommers

• William Herbert

• William Palmer

• Winton DeShong

175

https://github.com/cowtowncoder
https://github.com/tatu-at-salesforce
https://github.com/tnm
https://github.com/terezivy
https://github.com/thiagomoretto
https://github.com/tsundberg
https://github.com/pims
https://github.com/tbartley
https://github.com/cyberdelia
https://github.com/todd-toast
https://github.com/tomakehurst
https://github.com/tcrayford
https://github.com/thomaslee
https://github.com/tommorris
https://github.com/tomshen
https://github.com/tomcrhak-bb
https://github.com/tmszdmsk
https://github.com/tonygaetani
https://github.com/tmack8001
https://github.com/tristanbuckner
https://github.com/tburch
https://github.com/twilson-palantir
https://github.com/tjcutajar
https://github.com/vadims
https://github.com/vanvlack
https://github.com/varunl
https://github.com/vvavrychuk
https://github.com/victornoel
https://github.com/vitorreis
https://github.com/v-ladynev
https://github.com/vvondra
https://github.com/vzx
https://github.com/Will-Sommers
https://github.com/WilliamHerbert
https://github.com/willp-bl
https://github.com/wintondeshong

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

• Xavier Shay

• Xiaodong Xie

• Yaroslav Admin

• YE Qing

• Yiwei Gao

• Yun Zhi Lin

• Yurii Savka

• zebra-kangaroo

• zmarois

176 Chapter 20. Contributors

https://github.com/xaviershay
https://github.com/xiaodong-xie
https://github.com/devoto13
https://github.com/yq314
https://github.com/yiweig
https://github.com/yunspace
https://github.com/urisavka
https://github.com/zebra-kangaroo
https://github.com/zmarois

CHAPTER

TWENTYONE

SPONSORS

Dropwizard is generously supported by some companies with licenses and free accounts for their products.

21.1 JetBrains

JetBrains supports our open source project by sponsoring some All Products Packs within their Free Open Source
License program.

177

https://www.jetbrains.com/
https://www.jetbrains.com/products.html
https://www.jetbrains.com/buy/opensource/
https://www.jetbrains.com/buy/opensource/

Dropwizard Documentation, Release 2.0.36-SNAPSHOT

178 Chapter 21. Sponsors

CHAPTER

TWENTYTWO

OTHER VERSIONS

• 1.3.x

• 1.2.x

• 1.1.x

• 1.0.x

• 0.9.x

• 0.8.x

• 0.7.x

• 0.6.2

179

https://www.dropwizard.io/en/release-1.3.x/
https://www.dropwizard.io/en/release-1.2.x/
https://www.dropwizard.io/en/release-1.1.x/
https://www.dropwizard.io/en/release-1.0.x/
https://www.dropwizard.io/en/release-0.9.x/
https://www.dropwizard.io/en/release-0.8.x/
https://www.dropwizard.io/en/release-0.7.x/
http://dropwizard.github.io/dropwizard/0.6.2

	Security
	Frequently Asked Questions
	Getting Started
	Overview
	Jetty for HTTP
	Jersey for REST
	Jackson for JSON
	Metrics for metrics
	And Friends

	Setting Up Using Maven
	Tutorial

	Creating A Configuration Class
	Creating An Application Class
	Creating A Representation Class
	Creating A Resource Class
	Registering A Resource

	Creating A Health Check
	Adding A Health Check

	Building Fat JARs
	Versioning Your JARs

	Running Your Application
	Next Steps

	Dropwizard Core
	Organizing Your Project
	Application
	Configuration
	Environment variables
	SSL

	Bootstrapping
	Environments
	Health Checks
	Managed Objects
	Bundles
	Serving Assets
	SSL Reload

	Commands
	Configured Commands

	Tasks
	Logging
	Log Format
	Configuration
	Asynchronous Logging
	Console Logging
	File Logging
	Syslog Logging
	JSON Log Format
	Logging Configuration via HTTP
	Logging Filters
	Filtering Request Logs for a Specific URI

	Testing Applications
	Banners
	Resources
	Paths
	Methods
	Metrics
	Parameters
	Request Entities
	Media Types
	Responses
	Error Handling
	Overriding Default Exception Mappers

	URIs
	Testing
	Caching
	Sessions

	Representations
	Basic JSON
	Advanced JSON
	Snake Case
	Unknown properties

	Streaming Output
	HTML Representations
	Custom Representations
	Jersey filters
	Servlet filters

	How it’s glued together

	Dropwizard Dependency Injection
	Dependency Injection Using HK2

	Dropwizard Client
	Apache HttpClient
	Metrics

	Jersey Client
	Configuration
	Rx Usage
	Proxy Authentication

	Dropwizard JDBI3
	Configuration
	Plugins
	Usage
	Exception Handling
	Prepended Comments

	Dropwizard Migrations
	Configuration
	Adding The Bundle
	Defining Migrations
	Checking Your Database’s State
	Dumping Your Schema
	Tagging Your Schema
	Migrating Your Schema
	Rolling Back Your Schema
	Testing Migrations
	Preparing A Rollback Script
	Generating Documentation
	Dropping All Objects
	Fast-Forwarding Through A Changeset
	Support For Adding Multiple Migration Bundles
	More Information

	Dropwizard Hibernate
	Configuration
	Usage
	Data Access Objects
	Transactional Resource Methods
	Transactional Resource Methods Outside Jersey Resources

	Prepended Comments

	Dropwizard Authentication
	Authenticators
	Caching

	Authorizer
	Basic Authentication
	OAuth2
	Chained Factories
	Protecting Resources
	Optional protection

	Testing Protected Resources
	OAuth Example
	BasicAuth Example

	Multiple Principals and Authenticators

	Dropwizard Forms
	Adding The Bundle
	Testing
	More Information

	Dropwizard Validation
	Validations
	Constraining Entities
	Constraints on optional types
	Enum Constraints
	Return Value Validations

	Limitations
	Annotations
	Validating Grouped Constraints with @Validated

	Testing
	Extending

	Dropwizard Views
	Template Errors
	Caching
	Custom Error Pages

	Dropwizard & Scala
	Testing Dropwizard
	Testing Representations
	Fixtures
	Testing Serialization
	Testing Deserialization

	Testing Resources
	Default Exception Mappers
	Test Containers

	Testing Client Implementations
	Integration Testing
	JUnit 5
	JUnit 4
	Non-JUnit

	Testing Commands
	Testing Database Interactions
	Testing Configurations

	Upgrade Notes
	Upgrade Notes for Dropwizard 0.7.x
	Upgrade Notes for Dropwizard 0.8.x
	First
	Migration of Apache Commons Lang
	Use assertions from AssertJ
	Migration of custom URL pattern
	Migration of Jersey
	Dropwizard Class Rule
	Executing a GET request
	Executing a POST request
	Executing a empty PUT request
	Request/response filters

	Upgrade Notes for Dropwizard 0.9.x
	Migrating Auth
	UnwrapValidatedValue Changes
	Logging bootstrap

	Upgrade Notes for Dropwizard 1.0.x
	Change the project compile and target level to 1.8
	Remove the dropwizard-java8 module
	Migrate dropwizard-spdy to dropwizard-http2
	Replace Guava’s Optional by java.util.Optional in Dropwizard public API
	Migrate your Hibernate resources to Hibernate 5
	Add missing @Valid annotations

	Upgrade Notes for Dropwizard 1.1.x
	Upgrade Notes for Dropwizard 2.0.x
	Dropwizard Bill of Materials (BOM)
	Removed Configuration Options
	Jersey
	Context injection on fields in resource instances

	More Secure TLS
	Jackson Changes
	Support for JDBI 2.x moved out of Dropwizard core modules
	Miscellaneous
	Improved validation message for min/max duration
	Task execute method

	Dropwizard Example, Step by Step
	Dropwizard Configuration Reference
	Servers
	All
	GZip
	Request Log
	Classic Request Log
	Server Push

	Simple
	Default

	Connectors
	HTTP
	HTTPS
	HTTP/2 over TLS
	HTTP/2 Plain Text

	Tasks
	Health checks
	Logging
	Console
	File
	Syslog
	TCP
	UDP
	FilterFactories
	JSON layout
	Exception

	JSON access log layout

	Metrics
	All Reporters
	Formatted Reporters

	Console Reporter
	CSV Reporter
	Graphite Reporter
	SLF4J

	Clients
	HttpClient
	Proxy
	TLS

	JerseyClient

	Database
	Polymorphic configuration

	Dropwizard Internals
	Startup Sequence
	Commands
	The CLI class

	Jetty Lifecycle

	Contributors
	Sponsors
	JetBrains

	Other Versions

