
Dropwizard Documentation
Release @project.version@

Coda Hale

Oct 09, 2019

Contents

1 Getting Started 3

2 User Manual 17

3 Javadoc 103

4 About Dropwizard 105

5 Other Versions 133

i

ii

Dropwizard Documentation, Release @project.version@

Dropwizard pulls together stable, mature libraries from the Java ecosystem into a simple, light-weight package that
lets you focus on getting things done.

Dropwizard has out-of-the-box support for sophisticated configuration, application metrics, logging, operational
tools, and much more, allowing you and your team to ship a production-quality web service in the shortest time
possible.

Contents 1

Dropwizard Documentation, Release @project.version@

2 Contents

CHAPTER 1

Getting Started

Getting Started will guide you through the process of creating a simple Dropwizard Project: Hello
World. Along the way, we’ll explain the various underlying libraries and their roles, important con-
cepts in Dropwizard, and suggest some organizational techniques to help you as your project grows.
(Or you can just skip to the fun part.)

1.1 Overview

Dropwizard straddles the line between being a library and a framework. Its goal is to provide performant, reliable
implementations of everything a production-ready web application needs. Because this functionality is extracted into
a reusable library, your application remains lean and focused, reducing both time-to-market and maintenance burdens.

1.1.1 Jetty for HTTP

Because you can’t be a web application without HTTP, Dropwizard uses the Jetty HTTP library to embed an incredibly
tuned HTTP server directly into your project. Instead of handing your application off to a complicated application
server, Dropwizard projects have a main method which spins up an HTTP server. Running your application as a
simple process eliminates a number of unsavory aspects of Java in production (no PermGen issues, no application
server configuration and maintenance, no arcane deployment tools, no class loader troubles, no hidden application
logs, no trying to tune a single garbage collector to work with multiple application workloads) and allows you to use
all of the existing Unix process management tools instead.

1.1.2 Jersey for REST

For building RESTful web applications, we’ve found nothing beats Jersey (the JAX-RS reference implementation) in
terms of features or performance. It allows you to write clean, testable classes which gracefully map HTTP requests to
simple Java objects. It supports streaming output, matrix URI parameters, conditional GET requests, and much, much
more.

3

http://www.eclipse.org/jetty/
http://jersey.java.net
http://jcp.org/en/jsr/detail?id=311

Dropwizard Documentation, Release @project.version@

1.1.3 Jackson for JSON

In terms of data formats, JSON has become the web’s lingua franca, and Jackson is the king of JSON on the JVM.
In addition to being lightning fast, it has a sophisticated object mapper, allowing you to export your domain models
directly.

1.1.4 Metrics for metrics

The Metrics library rounds things out, providing you with unparalleled insight into your code’s behavior in your
production environment.

1.1.5 And Friends

In addition to Jetty, Jersey, and Jackson, Dropwizard also includes a number of libraries to help you ship more quickly
and with fewer regrets.

• Guava, which, in addition to highly optimized immutable data structures, provides a growing number of classes
to speed up development in Java.

• Logback and slf4j for performant and flexible logging.

• Hibernate Validator, the JSR 349 reference implementation, provides an easy, declarative framework for vali-
dating user input and generating helpful and i18n-friendly error messages.

• The Apache HttpClient and Jersey client libraries allow for both low- and high-level interaction with other web
services.

• JDBI is the most straightforward way to use a relational database with Java.

• Liquibase is a great way to keep your database schema in check throughout your development and release cycles,
applying high-level database refactorings instead of one-off DDL scripts.

• Freemarker and Mustache are simple templating systems for more user-facing applications.

• Joda Time is a very complete, sane library for handling dates and times.

Now that you’ve gotten the lay of the land, let’s dig in!

1.2 Setting Up Using Maven

We recommend you use Maven for new Dropwizard applications. If you’re a big Ant / Ivy, Buildr, Gradle, SBT,
Leiningen, or Gant fan, that’s cool, but we use Maven, and we’ll be using Maven as we go through this example
application. If you have any questions about how Maven works, Maven: The Complete Reference should have what
you’re looking for.

You have three alternatives from here:

1. Create a project using dropwizard-archetype

mvn archetype:generate -DarchetypeGroupId=io.dropwizard.archetypes -
DarchetypeArtifactId=java-simple -DarchetypeVersion=0.9.1

2. Look at the dropwizard-example

3. Follow the tutorial below to see how you can include it in your existing project

4 Chapter 1. Getting Started

http://wiki.fasterxml.com/JacksonHome
http://metrics.dropwizard.io/
http://www.eclipse.org/jetty/
http://jersey.java.net
http://wiki.fasterxml.com/JacksonHome
https://github.com/google/guava
http://logback.qos.ch/
http://www.slf4j.org/
http://www.hibernate.org/subprojects/validator.html
http://jcp.org/en/jsr/detail?id=349
http://hc.apache.org/httpcomponents-client-ga/index.html
http://jersey.java.net
http://www.jdbi.org
http://www.liquibase.org
http://freemarker.sourceforge.net/
http://mustache.github.io/
http://joda-time.sourceforge.net/
http://maven.apache.org
http://ant.apache.org/
http://ant.apache.org/ivy/
http://buildr.apache.org/
http://www.gradle.org/
https://github.com/harrah/xsbt/wiki
https://github.com/technomancy/leiningen
https://github.com/Gant/Gant
https://books.sonatype.com/mvnref-book/reference/
https://github.com/dropwizard/dropwizard/tree/master/dropwizard-archetypes
https://github.com/dropwizard/dropwizard/tree/master/dropwizard-example

Dropwizard Documentation, Release @project.version@

1.2.1 Tutorial

First, add a dropwizard.version property to your POM with the current version of Dropwizard (which is
@project.version@):

<properties>
<dropwizard.version>INSERT VERSION HERE</dropwizard.version>

</properties>

Add the dropwizard-core library as a dependency:

<dependencies>
<dependency>

<groupId>io.dropwizard</groupId>
<artifactId>dropwizard-core</artifactId>
<version>${dropwizard.version}</version>

</dependency>
</dependencies>

Alright, that’s enough XML. We’ve got a Maven project set up now, and it’s time to start writing real code.

1.3 Creating A Configuration Class

Each Dropwizard application has its own subclass of the Configuration class which specifies environment-
specific parameters. These parameters are specified in a YAML configuration file which is deserialized to an instance
of your application’s configuration class and validated.

The application we’ll be building is a high-performance Hello World service, and one of our requirements is that we
need to be able to vary how it says hello from environment to environment. We’ll need to specify at least two things
to begin with: a template for saying hello and a default name to use in case the user doesn’t specify their name.

Here’s what our configuration class will look like, full example conf here:

package com.example.helloworld;

import io.dropwizard.Configuration;
import com.fasterxml.jackson.annotation.JsonProperty;
import org.hibernate.validator.constraints.NotEmpty;

public class HelloWorldConfiguration extends Configuration {
@NotEmpty
private String template;

@NotEmpty
private String defaultName = "Stranger";

@JsonProperty
public String getTemplate() {

return template;
}

@JsonProperty
public void setTemplate(String template) {

this.template = template;
}

(continues on next page)

1.3. Creating A Configuration Class 5

http://www.yaml.org/
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/src/main/java/com/example/helloworld/HelloWorldConfiguration.java

Dropwizard Documentation, Release @project.version@

(continued from previous page)

@JsonProperty
public String getDefaultName() {

return defaultName;
}

@JsonProperty
public void setDefaultName(String name) {

this.defaultName = name;
}

}

There’s a lot going on here, so let’s unpack a bit of it.

When this class is deserialized from the YAML file, it will pull two root-level fields from the YAML object:
template, the template for our Hello World saying, and defaultName, the default name to use. Both template
and defaultName are annotated with @NotEmpty, so if the YAML configuration file has blank values for either
or is missing template entirely an informative exception will be thrown, and your application won’t start.

Both the getters and setters for template and defaultName are annotated with @JsonProperty, which allows
Jackson to both deserialize the properties from a YAML file but also to serialize it.

Note: The mapping from YAML to your application’s Configuration instance is done by Jackson. This means
your Configuration class can use all of Jackson’s object-mapping annotations. The validation of @NotEmpty is
handled by Hibernate Validator, which has a wide range of built-in constraints for you to use.

Our YAML file will then look like the below, full example yml here:

template: Hello, %s!
defaultName: Stranger

Dropwizard has many more configuration parameters than that, but they all have sane defaults so you can keep your
configuration files small and focused.

So save that YAML file as hello-world.yml, because we’ll be getting up and running pretty soon, and we’ll need
it. Next up, we’re creating our application class!

1.4 Creating An Application Class

Combined with your project’s Configuration subclass, its Application subclass forms the core of your Drop-
wizard application. The Application class pulls together the various bundles and commands which provide basic
functionality. (More on that later.) For now, though, our HelloWorldApplication looks like this:

package com.example.helloworld;

import io.dropwizard.Application;
import io.dropwizard.setup.Bootstrap;
import io.dropwizard.setup.Environment;
import com.example.helloworld.resources.HelloWorldResource;
import com.example.helloworld.health.TemplateHealthCheck;

public class HelloWorldApplication extends Application<HelloWorldConfiguration> {
public static void main(String[] args) throws Exception {

new HelloWorldApplication().run(args);

(continues on next page)

6 Chapter 1. Getting Started

http://wiki.fasterxml.com/JacksonHome
http://wiki.fasterxml.com/JacksonAnnotations
http://docs.jboss.org/hibernate/validator/4.2/reference/en-US/html_single/#validator-defineconstraints-builtin
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml

Dropwizard Documentation, Release @project.version@

(continued from previous page)

}

@Override
public String getName() {

return "hello-world";
}

@Override
public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {

// nothing to do yet
}

@Override
public void run(HelloWorldConfiguration configuration,

Environment environment) {
// nothing to do yet

}

}

As you can see, HelloWorldApplication is parameterized with the application’s configuration type,
HelloWorldConfiguration. An initialize method is used to configure aspects of the application required
before the application is run, like bundles, configuration source providers, etc. Also, we’ve added a static main
method, which will be our application’s entry point. Right now, we don’t have any functionality implemented, so our
run method is a little boring. Let’s fix that!

1.5 Creating A Representation Class

Before we can get into the nuts-and-bolts of our Hello World application, we need to stop and think about our API.
Luckily, our application needs to conform to an industry standard, RFC 1149, which specifies the following JSON
representation of a Hello World saying:

{
"id": 1,
"content": "Hi!"

}

The id field is a unique identifier for the saying, and content is the textual representation of the saying. (Thankfully,
this is a fairly straight-forward industry standard.)

To model this representation, we’ll create a representation class:

package com.example.helloworld.api;

import com.fasterxml.jackson.annotation.JsonProperty;
import org.hibernate.validator.constraints.Length;

public class Saying {
private long id;

@Length(max = 3)
private String content;

public Saying() {

(continues on next page)

1.5. Creating A Representation Class 7

http://www.ietf.org/rfc/rfc1149.txt

Dropwizard Documentation, Release @project.version@

(continued from previous page)

// Jackson deserialization
}

public Saying(long id, String content) {
this.id = id;
this.content = content;

}

@JsonProperty
public long getId() {

return id;
}

@JsonProperty
public String getContent() {

return content;
}

}

This is a pretty simple POJO, but there are a few things worth noting here.

First, it’s immutable. This makes Saying instances very easy to reason about in multi-threaded environments as well
as single-threaded environments. Second, it uses the JavaBeans standard for the id and content properties. This
allows Jackson to serialize it to the JSON we need. The Jackson object mapping code will populate the id field of the
JSON object with the return value of #getId(), likewise with content and #getContent(). Lastly, the bean
leverages validation to ensure the content size is no greater than 3.

Note: The JSON serialization here is done by Jackson, which supports far more than simple JavaBean objects like this
one. In addition to the sophisticated set of annotations, you can even write your custom serializers and deserializers.

Now that we’ve got our representation class, it makes sense to start in on the resource it represents.

1.6 Creating A Resource Class

Jersey resources are the meat-and-potatoes of a Dropwizard application. Each resource class is associated with
a URI template. For our application, we need a resource which returns new Saying instances from the URI /
hello-world, so our resource class looks like this:

package com.example.helloworld.resources;

import com.example.helloworld.api.Saying;
import com.codahale.metrics.annotation.Timed;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.MediaType;
import java.util.concurrent.atomic.AtomicLong;
import java.util.Optional;

@Path("/hello-world")
@Produces(MediaType.APPLICATION_JSON)

(continues on next page)

8 Chapter 1. Getting Started

http://wiki.fasterxml.com/JacksonHome
http://wiki.fasterxml.com/JacksonAnnotations

Dropwizard Documentation, Release @project.version@

(continued from previous page)

public class HelloWorldResource {
private final String template;
private final String defaultName;
private final AtomicLong counter;

public HelloWorldResource(String template, String defaultName) {
this.template = template;
this.defaultName = defaultName;
this.counter = new AtomicLong();

}

@GET
@Timed
public Saying sayHello(@QueryParam("name") Optional<String> name) {

final String value = String.format(template, name.orElse(defaultName));
return new Saying(counter.incrementAndGet(), value);

}
}

Finally, we’re in the thick of it! Let’s start from the top and work our way down.

HelloWorldResource has two annotations: @Path and @Produces. @Path("/hello-world")
tells Jersey that this resource is accessible at the URI /hello-world, and @Produces(MediaType.
APPLICATION_JSON) lets Jersey’s content negotiation code know that this resource produces representations which
are application/json.

HelloWorldResource takes two parameters for construction: the template it uses to produce the saying and
the defaultName used when the user declines to tell us their name. An AtomicLong provides us with a cheap,
thread-safe way of generating unique(ish) IDs.

Warning: Resource classes are used by multiple threads concurrently. In general, we recommend that resources
be stateless/immutable, but it’s important to keep the context in mind.

#sayHello(Optional<String>) is the meat of this class, and it’s a fairly simple method. The
@QueryParam("name") annotation tells Jersey to map the name parameter from the query string to the name
parameter in the method. If the client sends a request to /hello-world?name=Dougie, sayHello will be
called with Optional.of("Dougie"); if there is no name parameter in the query string, sayHello will be
called with Optional.absent(). (Support for Guava’s Optional is a little extra sauce that Dropwizard adds to
Jersey’s existing functionality.)

Note: If the client sends a request to /hello-world?name=, sayHello will be called with Optional.
of(""). This may seem odd at first, but this follows the standards (an application may have different behav-
ior depending on if a parameter is empty vs nonexistent). You can swap Optional<String> parameter with
NonEmptyStringParam if you want /hello-world?name= to return “Hello, Stranger!” For more informa-
tion on resource parameters see the documentation

Inside the sayHello method, we increment the counter, format the template using String.format(String,
Object...), and return a new Saying instance.

Because sayHello is annotated with @Timed, Dropwizard automatically records the duration and rate of its invo-
cations as a Metrics Timer.

Once sayHello has returned, Jersey takes the Saying instance and looks for a provider class which can write
Saying instances as application/json. Dropwizard has one such provider built in which allows for producing

1.6. Creating A Resource Class 9

Dropwizard Documentation, Release @project.version@

and consuming Java objects as JSON objects. The provider writes out the JSON and the client receives a 200 OK
response with a content type of application/json.

1.6.1 Registering A Resource

Before that will actually work, though, we need to go back to HelloWorldApplication and add this new re-
source class. In its runmethod we can read the template and default name from the HelloWorldConfiguration
instance, create a new HelloWorldResource instance, and then add it to the application’s Jersey environment:

@Override
public void run(HelloWorldConfiguration configuration,

Environment environment) {
final HelloWorldResource resource = new HelloWorldResource(

configuration.getTemplate(),
configuration.getDefaultName()

);
environment.jersey().register(resource);

}

When our application starts, we create a new instance of our resource class with the parameters from the configuration
file and hand it off to the Environment, which acts like a registry of all the things your application can do.

Note: A Dropwizard application can contain many resource classes, each corresponding to its own URI pattern. Just
add another @Path-annotated resource class and call register with an instance of the new class.

Before we go too far, we should add a health check for our application.

1.7 Creating A Health Check

Health checks give you a way of adding small tests to your application to allow you to verify that your application is
functioning correctly in production. We strongly recommend that all of your applications have at least a minimal set
of health checks.

Note: We recommend this so strongly, in fact, that Dropwizard will nag you should you neglect to add a health check
to your project.

Since formatting strings is not likely to fail while an application is running (unlike, say, a database connection pool),
we’ll have to get a little creative here. We’ll add a health check to make sure we can actually format the provided
template:

package com.example.helloworld.health;

import com.codahale.metrics.health.HealthCheck;

public class TemplateHealthCheck extends HealthCheck {
private final String template;

public TemplateHealthCheck(String template) {
this.template = template;

}

(continues on next page)

10 Chapter 1. Getting Started

Dropwizard Documentation, Release @project.version@

(continued from previous page)

@Override
protected Result check() throws Exception {

final String saying = String.format(template, "TEST");
if (!saying.contains("TEST")) {

return Result.unhealthy("template doesn't include a name");
}
return Result.healthy();

}
}

TemplateHealthCheck checks for two things: that the provided template is actually a well-formed format string,
and that the template actually produces output with the given name.

If the string is not a well-formed format string (for example, someone accidentally put Hello, %s% in the configura-
tion file), then String.format(String, Object...) will throw an IllegalFormatException and the
health check will implicitly fail. If the rendered saying doesn’t include the test string, the health check will explicitly
fail by returning an unhealthy Result.

1.7.1 Adding A Health Check

As with most things in Dropwizard, we create a new instance with the appropriate parameters and add it to the
Environment:

@Override
public void run(HelloWorldConfiguration configuration,

Environment environment) {
final HelloWorldResource resource = new HelloWorldResource(

configuration.getTemplate(),
configuration.getDefaultName()

);
final TemplateHealthCheck healthCheck =

new TemplateHealthCheck(configuration.getTemplate());
environment.healthChecks().register("template", healthCheck);
environment.jersey().register(resource);

}

Now we’re almost ready to go!

1.8 Building Fat JARs

We recommend that you build your Dropwizard applications as “fat” JAR files — single .jar files which contain
all of the .class files required to run your application. This allows you to build a single deployable artifact which
you can promote from your staging environment to your QA environment to your production environment without
worrying about differences in installed libraries. To start building our Hello World application as a fat JAR, we need
to configure a Maven plugin called maven-shade. In the <build><plugins> section of your pom.xml file,
add this:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.3</version>
<configuration>

(continues on next page)

1.8. Building Fat JARs 11

Dropwizard Documentation, Release @project.version@

(continued from previous page)

<createDependencyReducedPom>true</createDependencyReducedPom>
<filters>

<filter>
<artifact>*:*</artifact>
<excludes>

<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>

</excludes>
</filter>

</filters>
</configuration>
<executions>

<execution>
<phase>package</phase>
<goals>

<goal>shade</goal>
</goals>
<configuration>

<transformers>
<transformer implementation="org.apache.maven.plugins.shade.

→˓resource.ServicesResourceTransformer"/>
<transformer implementation="org.apache.maven.plugins.shade.

→˓resource.ManifestResourceTransformer">
<mainClass>com.example.helloworld.HelloWorldApplication</

→˓mainClass>
</transformer>

</transformers>
</configuration>

</execution>
</executions>

</plugin>

This configures Maven to do a couple of things during its package phase:

• Produce a pom.xml file which doesn’t include dependencies for the libraries whose contents are included in
the fat JAR.

• Exclude all digital signatures from signed JARs. If you don’t, then Java considers the signature invalid and
won’t load or run your JAR file.

• Collate the various META-INF/services entries in the JARs instead of overwriting them. (Neither Drop-
wizard nor Jersey works without those.)

• Set com.example.helloworld.HelloWorldApplication as the JAR’s MainClass. This will al-
low you to run the JAR using java -jar.

Warning: If your application has a dependency which must be signed (e.g., a JCA/JCE provider or other trusted
library), you have to add an exclusion to the maven-shade-plugin configuration for that library and include
that JAR in the classpath.

Warning: Since Dropwizard is using the Java ServiceLoader functionality to register and load extensions, the
minimizeJar option of the maven-shade-plugin will lead to non-working application JARs.

12 Chapter 1. Getting Started

http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html
http://maven.apache.org/plugins/maven-shade-plugin/examples/includes-excludes.html
http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html
https://maven.apache.org/plugins/maven-shade-plugin/shade-mojo.html#minimizeJar

Dropwizard Documentation, Release @project.version@

1.8.1 Versioning Your JARs

Dropwizard can also use the project version if it’s embedded in the JAR’s manifest as the
Implementation-Version. To embed this information using Maven, add the following to the
<build><plugins> section of your pom.xml file:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.4</version>
<configuration>

<archive>
<manifest>

<addDefaultImplementationEntries>true</
→˓addDefaultImplementationEntries>

</manifest>
</archive>

</configuration>
</plugin>

This can be handy when trying to figure out what version of your application you have deployed on a machine.

Once you’ve got that configured, go into your project directory and run mvn package (or run the package goal
from your IDE). You should see something like this:

[INFO] Including org.eclipse.jetty:jetty-util:jar:7.6.0.RC0 in the shaded jar.
[INFO] Including com.google.guava:guava:jar:10.0.1 in the shaded jar.
[INFO] Including com.google.code.findbugs:jsr305:jar:1.3.9 in the shaded jar.
[INFO] Including org.hibernate:hibernate-validator:jar:4.2.0.Final in the shaded jar.
[INFO] Including javax.validation:validation-api:jar:1.0.0.GA in the shaded jar.
[INFO] Including org.yaml:snakeyaml:jar:1.9 in the shaded jar.
[INFO] Replacing original artifact with shaded artifact.
[INFO] Replacing /Users/yourname/Projects/hello-world/target/hello-world-0.0.1-
→˓SNAPSHOT.jar with /Users/yourname/Projects/hello-world/target/hello-world-0.0.1-
→˓SNAPSHOT-shaded.jar
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 8.415s
[INFO] Finished at: Fri Dec 02 16:26:42 PST 2011
[INFO] Final Memory: 11M/81M
[INFO] --

Congratulations! You’ve built your first Dropwizard project! Now it’s time to run it!

1.9 Running Your Application

Now that you’ve built a JAR file, it’s time to run it.

In your project directory, run this:

java -jar target/hello-world-0.0.1-SNAPSHOT.jar

You should see something like the following:

1.9. Running Your Application 13

Dropwizard Documentation, Release @project.version@

usage: java -jar hello-world-0.0.1-SNAPSHOT.jar
[-h] [-v] {server} ...

positional arguments:
{server} available commands

optional arguments:
-h, --help show this help message and exit
-v, --version show the service version and exit

Dropwizard takes the first command line argument and dispatches it to a matching command. In this case, the only
command available is server, which runs your application as an HTTP server. The server command requires a
configuration file, so let’s go ahead and give it the YAML file we previously saved:

java -jar target/hello-world-0.0.1-SNAPSHOT.jar server hello-world.yml

You should see something like the following:

INFO [2011-12-03 00:38:32,927] io.dropwizard.cli.ServerCommand: Starting hello-world
INFO [2011-12-03 00:38:32,931] org.eclipse.jetty.server.Server: jetty-7.x.y-SNAPSHOT
INFO [2011-12-03 00:38:32,936] org.eclipse.jetty.server.handler.ContextHandler:
→˓started o.e.j.s.ServletContextHandler{/,null}
INFO [2011-12-03 00:38:32,999] com.sun.jersey.server.impl.application.
→˓WebApplicationImpl: Initiating Jersey application, version 'Jersey: 1.10 11/02/2011
→˓03:53 PM'
INFO [2011-12-03 00:38:33,041] io.dropwizard.setup.Environment:

GET /hello-world (com.example.helloworld.resources.HelloWorldResource)

INFO [2011-12-03 00:38:33,215] org.eclipse.jetty.server.handler.ContextHandler:
→˓started o.e.j.s.ServletContextHandler{/,null}
INFO [2011-12-03 00:38:33,235] org.eclipse.jetty.server.AbstractConnector: Started
→˓BlockingChannelConnector@0.0.0.0:8080 STARTING
INFO [2011-12-03 00:38:33,238] org.eclipse.jetty.server.AbstractConnector: Started
→˓SocketConnector@0.0.0.0:8081 STARTING

Your Dropwizard application is now listening on ports 8080 for application requests and 8081 for administration
requests. If you press ^C, the application will shut down gracefully, first closing the server socket, then waiting for
in-flight requests to be processed, then shutting down the process itself.

However, while it’s up, let’s give it a whirl! Click here to say hello! Click here to get even friendlier!

So, we’re generating sayings. Awesome. But that’s not all your application can do. One of the main reasons for using
Dropwizard is the out-of-the-box operational tools it provides, all of which can be found on the admin port.

If you click through to the metrics resource, you can see all of your application’s metrics represented as a JSON object.

The threads resource allows you to quickly get a thread dump of all the threads running in that process.

Hint: When a Jetty worker thread is handling an incoming HTTP request, the thread name is set to the method and
URI of the request. This can be very helpful when debugging a poorly-behaving request.

The healthcheck resource runs the health check class we wrote. You should see something like this:

* deadlocks: OK

* template: OK

14 Chapter 1. Getting Started

http://localhost:8080/hello-world
http://localhost:8080/hello-world?name=Successful+Dropwizard+User
http://localhost:8081/
http://localhost:8081/metrics
http://localhost:8081/threads
http://localhost:8081/healthcheck

Dropwizard Documentation, Release @project.version@

template here is the result of your TemplateHealthCheck, which unsurprisingly passed. deadlocks is a
built-in health check which looks for deadlocked JVM threads and prints out a listing if any are found.

1.10 Next Steps

Well, congratulations. You’ve got a Hello World application ready for production (except for the lack of tests) that’s
capable of doing 30,000-50,000 requests per second. Hopefully, you’ve gotten a feel for how Dropwizard combines
Jetty, Jersey, Jackson, and other stable, mature libraries to provide a phenomenal platform for developing RESTful
web applications.

There’s a lot more to Dropwizard than is covered here (commands, bundles, servlets, advanced configuration, valida-
tion, HTTP clients, database clients, views, etc.), all of which is covered by the User Manual.

1.10. Next Steps 15

Dropwizard Documentation, Release @project.version@

16 Chapter 1. Getting Started

CHAPTER 2

User Manual

This goal of this document is to provide you with all the information required to build, organize, test,
deploy, and maintain Dropwizard-based applications. If you’re new to Dropwizard, you should read
the Getting Started guide first.

2.1 Dropwizard Core

The dropwizard-core module provides you with everything you’ll need for most of your applica-
tions.

It includes:

• Jetty, a high-performance HTTP server.

• Jersey, a full-featured RESTful web framework.

• Jackson, the best JSON library for the JVM.

• Metrics, an excellent library for application metrics.

• Guava, Google’s excellent utility library.

• Logback, the successor to Log4j, Java’s most widely-used logging framework.

• Hibernate Validator, the reference implementation of the Java Bean Validation standard.

Dropwizard consists mostly of glue code to automatically connect and configure these components.

2.1.1 Organizing Your Project

In general, we recommend you separate your projects into three Maven modules: project-api,
project-client, and project-application.

project-api should contain your Representations; project-client should use those classes and an HTTP
client to implement a full-fledged client for your application, and project-application should provide the
actual application implementation, including Resources.

17

Dropwizard Documentation, Release @project.version@

Our applications tend to look like this:

• com.example.myapplication:

– api: Representations.

– cli: Commands

– client: Client implementation for your application

– core: Domain implementation

– jdbi: Database access classes

– health: Health Checks

– resources: Resources

– MyApplication: The application class

– MyApplicationConfiguration: configuration class

2.1.2 Application

The main entry point into a Dropwizard application is, unsurprisingly, the Application class. Each
Application has a name, which is mostly used to render the command-line interface. In the constructor of your
Application you can add Bundles and Commands to your application.

2.1.3 Configuration

Dropwizard provides a number of built-in configuration parameters. They are well documented in the example
project’s configuration and configuration refererence.

Each Application subclass has a single type parameter: that of its matching Configuration subclass. These
are usually at the root of your application’s main package. For example, your User application would have two
classes: UserApplicationConfiguration, extending Configuration, and UserApplication, ex-
tending Application<UserApplicationConfiguration>.

When your application runs Configured Commands like the server command, Dropwizard parses the provided
YAML configuration file and builds an instance of your application’s configuration class by mapping YAML field
names to object field names.

Note: If your configuration file doesn’t end in .yml or .yaml, Dropwizard tries to parse it as a JSON file.

To keep your configuration file and class manageable, we recommend grouping related configuration parameters into
independent configuration classes. If your application requires a set of configuration parameters in order to connect to
a message queue, for example, we recommend that you create a new MessageQueueFactory class:

public class MessageQueueFactory {
@NotEmpty
private String host;

@Min(1)
@Max(65535)
private int port = 5672;

@JsonProperty
(continues on next page)

18 Chapter 2. User Manual

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml

Dropwizard Documentation, Release @project.version@

(continued from previous page)

public String getHost() {
return host;

}

@JsonProperty
public void setHost(String host) {

this.host = host;
}

@JsonProperty
public int getPort() {

return port;
}

@JsonProperty
public void setPort(int port) {

this.port = port;
}

public MessageQueueClient build(Environment environment) {
MessageQueueClient client = new MessageQueueClient(getHost(), getPort());
environment.lifecycle().manage(new Managed() {

@Override
public void start() {
}

@Override
public void stop() {

client.close();
}

});
return client;

}
}

In this example our factory will automatically tie our MessageQueueClient connection to the lifecycle of our
application’s Environment.

Your main Configuration subclass can then include this as a member field:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
private MessageQueueFactory messageQueue = new MessageQueueFactory();

@JsonProperty("messageQueue")
public MessageQueueFactory getMessageQueueFactory() {

return messageQueue;
}

@JsonProperty("messageQueue")
public void setMessageQueueFactory(MessageQueueFactory factory) {

this.messageQueue = factory;
}

}

And your Application subclass can then use your factory to directly construct a client for the message queue:

2.1. Dropwizard Core 19

Dropwizard Documentation, Release @project.version@

public void run(ExampleConfiguration configuration,
Environment environment) {

MessageQueueClient messageQueue = configuration.getMessageQueueFactory().
→˓build(environment);
}

Then, in your application’s YAML file, you can use a nested messageQueue field:

messageQueue:
host: mq.example.com
port: 5673

The @NotNull, @NotEmpty, @Min, @Max, and @Valid annotations are part of Dropwizard Validation functional-
ity. If your YAML configuration file’s messageQueue.host field was missing (or was a blank string), Dropwizard
would refuse to start and would output an error message describing the issues.

Once your application has parsed the YAML file and constructed its Configuration instance, Dropwizard then
calls your Application subclass to initialize your application’s Environment.

Note: You can override configuration settings by passing special Java system properties when starting your applica-
tion. Overrides must start with prefix dw., followed by the path to the configuration value being overridden.

For example, to override the Logging level, you could start your application like this:

java -Ddw.logging.level=DEBUG server my-config.json

This will work even if the configuration setting in question does not exist in your config file, in which case it will get
added.

You can override configuration settings in arrays of objects like this:

java -Ddw.server.applicationConnectors[0].port=9090 server my-config.json

You can override configuration settings in maps like this:

java -Ddw.database.properties.hibernate.hbm2ddl.auto=none server my-config.
json

You can also override a configuration setting that is an array of strings by using the ‘,’ character as an array ele-
ment separator. For example, to override a configuration setting myapp.myserver.hosts that is an array of strings in
the configuration, you could start your service like this: java -Ddw.myapp.myserver.hosts=server1,
server2,server3 server my-config.json

If you need to use the ‘,’ character in one of the values, you can escape it by using ‘,’ instead.

The array override facility only handles configuration elements that are arrays of simple strings. Also, the setting in
question must already exist in your configuration file as an array; this mechanism will not work if the configuration
key being overridden does not exist in your configuration file. If it does not exist or is not an array setting, it will get
added as a simple string setting, including the ‘,’ characters as part of the string.

Environment variables

The dropwizard-configuration module also provides the capabilities to substitute configura-
tion settings with the value of environment variables using a SubstitutingSourceProvider and
EnvironmentVariableSubstitutor.

20 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

public class MyApplication extends Application<MyConfiguration> {
// [...]
@Override
public void initialize(Bootstrap<MyConfiguration> bootstrap) {

// Enable variable substitution with environment variables
bootstrap.setConfigurationSourceProvider(

new SubstitutingSourceProvider(bootstrap.
→˓getConfigurationSourceProvider(),

new
→˓EnvironmentVariableSubstitutor(false)

)
);

}

// [...]
}

The configuration settings which should be substituted need to be explicitly written in the configuration file and follow
the substitution rules of StrSubstitutor from the Apache Commons Lang library.

mySetting: ${DW_MY_SETTING}
defaultSetting: ${DW_DEFAULT_SETTING:-default value}

In general SubstitutingSourceProvider isn’t restricted to substitute environment variables but can be used
to replace variables in the configuration source with arbitrary values by passing a custom StrSubstitutor imple-
mentation.

SSL

SSL support is built into Dropwizard. You will need to provide your own java keystore, which is outside the scope of
this document (keytool is the command you need, and Jetty’s documentation can get you started). There is a test
keystore you can use in the Dropwizard example project.

server:
applicationConnectors:
- type: https

port: 8443
keyStorePath: example.keystore
keyStorePassword: example
validateCerts: false

By default, only secure TLSv1.2 cipher suites are allowed. Older versions of cURL, Java 6 and 7, and other clients
may be unable to communicate with the allowed cipher suites, but this was a conscious decision that sacrifices inter-
operability for security.

Dropwizard allows a workaround by specifying a customized list of cipher suites. If no lists of supported protocols
or cipher suites are specified, then the JVM defaults are used. If no lists of excluded protocols or cipher suites are
specified, then the defaults are inherited from Jetty.

The following list of excluded cipher suites will allow for TLSv1 and TLSv1.1 clients to negotiate a connection similar
to pre-Dropwizard 1.0.

server:
applicationConnectors:
- type: https

(continues on next page)

2.1. Dropwizard Core 21

https://commons.apache.org/proper/commons-lang/javadocs/api-release/org/apache/commons/lang3/text/StrSubstitutor.html
http://www.eclipse.org/jetty/documentation/current/configuring-ssl.html
https://github.com/dropwizard/dropwizard/tree/master/dropwizard-example

Dropwizard Documentation, Release @project.version@

(continued from previous page)

port: 8443
excludedCipherSuites:

- SSL_RSA_WITH_DES_CBC_SHA
- SSL_DHE_RSA_WITH_DES_CBC_SHA
- SSL_DHE_DSS_WITH_DES_CBC_SHA
- SSL_RSA_EXPORT_WITH_RC4_40_MD5
- SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
- SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
- SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

2.1.4 Bootstrapping

Before a Dropwizard application can provide the command-line interface, parse a configuration file, or run as a
server, it must first go through a bootstrapping phase. This phase corresponds to your Application subclass’s
initialize method. You can add Bundles, Commands, or register Jackson modules to allow you to include cus-
tom types as part of your configuration class.

2.1.5 Environments

A Dropwizard Environment consists of all the Resources, servlets, filters, Health Checks, Jersey providers, Man-
aged Objects, Tasks, and Jersey properties which your application provides.

Each Application subclass implements a run method. This is where you should be creating new resource in-
stances, etc., and adding them to the given Environment class:

@Override
public void run(ExampleConfiguration config,

Environment environment) {
// encapsulate complicated setup logic in factories
final Thingy thingy = config.getThingyFactory().build();

environment.jersey().register(new ThingyResource(thingy));
environment.healthChecks().register("thingy", new ThingyHealthCheck(thingy));

}

It’s important to keep the run method clean, so if creating an instance of something is complicated, like the Thingy
class above, extract that logic into a factory.

2.1.6 Health Checks

A health check is a runtime test which you can use to verify your application’s behavior in its production environment.
For example, you may want to ensure that your database client is connected to the database:

public class DatabaseHealthCheck extends HealthCheck {
private final Database database;

public DatabaseHealthCheck(Database database) {
this.database = database;

}

@Override
protected Result check() throws Exception {

(continues on next page)

22 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

(continued from previous page)

if (database.isConnected()) {
return Result.healthy();

} else {
return Result.unhealthy("Cannot connect to " + database.getUrl());

}
}

}

You can then add this health check to your application’s environment:

environment.healthChecks().register("database", new DatabaseHealthCheck(database));

By sending a GET request to /healthcheck on the admin port you can run these tests and view the results:

$ curl http://dw.example.com:8081/healthcheck
{"deadlocks":{"healthy":true},"database":{"healthy":true}}

If all health checks report success, a 200 OK is returned. If any fail, a 500 Internal Server Error is
returned with the error messages and exception stack traces (if an exception was thrown).

All Dropwizard applications ship with the deadlocks health check installed by default, which uses Java 1.6’s built-
in thread deadlock detection to determine if any threads are deadlocked.

2.1.7 Managed Objects

Most applications involve objects which need to be started and stopped: thread pools, database connections, etc. Drop-
wizard provides the Managed interface for this. You can either have the class in question implement the #start()
and #stop() methods, or write a wrapper class which does so. Adding a Managed instance to your application’s
Environment ties that object’s lifecycle to that of the application’s HTTP server. Before the server starts, the
#start() method is called. After the server has stopped (and after its graceful shutdown period) the #stop()
method is called.

For example, given a theoretical Riak client which needs to be started and stopped:

public class RiakClientManager implements Managed {
private final RiakClient client;

public RiakClientManager(RiakClient client) {
this.client = client;

}

@Override
public void start() throws Exception {

client.start();
}

@Override
public void stop() throws Exception {

client.stop();
}

}

public class MyApplication extends Application<MyConfiguration>{
@Override
public void run(MyApplicationConfiguration configuration, Environment

→˓environment) { (continues on next page)

2.1. Dropwizard Core 23

http://basho.com/products/

Dropwizard Documentation, Release @project.version@

(continued from previous page)

RiakClient client = ...;
RiakClientManager riakClientManager = new RiakClientManager(client);
environment.lifecycle().manage(riakClientManager);

}
}

If RiakClientManager#start() throws an exception–e.g., an error connecting to the server–your application
will not start and a full exception will be logged. If RiakClientManager#stop() throws an exception, the
exception will be logged but your application will still be able to shut down.

It should be noted that Environment has built-in factory methods for
ExecutorService and ScheduledExecutorService instances which
are managed. See LifecycleEnvironment#executorService and
LifecycleEnvironment#scheduledExecutorService for details.

2.1.8 Bundles

A Dropwizard bundle is a reusable group of functionality, used to define blocks of an application’s behavior. For
example, AssetBundle from the dropwizard-assets module provides a simple way to serve static assets
from your application’s src/main/resources/assets directory as files available from /assets/* (or any
other path) in your application.

Configured Bundles

Some bundles require configuration parameters. These bundles implement ConfiguredBundle and will require
your application’s Configuration subclass to implement a specific interface.

For example: given the configured bundle MyConfiguredBundle and the interface
MyConfiguredBundleConfig below. Your application’s Configuration subclass would need to im-
plement MyConfiguredBundleConfig.

public class MyConfiguredBundle implements ConfiguredBundle<MyConfiguredBundleConfig>{

@Override
public void run(MyConfiguredBundleConfig applicationConfig, Environment

→˓environment) {
applicationConfig.getBundleSpecificConfig();

}

@Override
public void initialize(Bootstrap<?> bootstrap) {

}
}

public interface MyConfiguredBundleConfig{

String getBundleSpecificConfig();

}

24 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

Serving Assets

Either your application or your static assets can be served from the root path, but not both. The latter is useful when
using Dropwizard to back a Javascript application. To enable it, move your application to a sub-URL.

server:
rootPath: /api/

Note: If you use the Simple server configuration, then rootPath is calculated relatively from
applicationContextPath. So, your API will be accessible from the path /application/api/

Then use an extended AssetsBundle constructor to serve resources in the assets folder from the root path.
index.htm is served as the default page.

@Override
public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {

bootstrap.addBundle(new AssetsBundle("/assets/", "/"));
}

When an AssetBundle is added to the application, it is registered as a servlet using a default name of assets. If
the application needs to have multiple AssetBundle instances, the extended constructor should be used to specify
a unique name for the AssetBundle.

@Override
public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {

bootstrap.addBundle(new AssetsBundle("/assets/css", "/css", null, "css"));
bootstrap.addBundle(new AssetsBundle("/assets/js", "/js", null, "js"));
bootstrap.addBundle(new AssetsBundle("/assets/fonts", "/fonts", null, "fonts"));

}

2.1.9 Commands

Commands are basic actions which Dropwizard runs based on the arguments provided on the command line. The built-
in server command, for example, spins up an HTTP server and runs your application. Each Command subclass has
a name and a set of command line options which Dropwizard will use to parse the given command line arguments.

Below is an example on how to add a command and have Dropwizard recognize it.

public class MyCommand extends Command {
public MyCommand() {

// The name of our command is "hello" and the description printed is
// "Prints a greeting"
super("hello", "Prints a greeting");

}

@Override
public void configure(Subparser subparser) {

// Add a command line option
subparser.addArgument("-u", "--user")

.dest("user")

.type(String.class)

.required(true)

.help("The user of the program");
}

(continues on next page)

2.1. Dropwizard Core 25

Dropwizard Documentation, Release @project.version@

(continued from previous page)

@Override
public void run(Bootstrap<?> bootstrap, Namespace namespace) throws Exception {

System.out.println("Hello " + namespace.getString("user"));
}

}

Dropwizard recognizes our command once we add it in the initialize stage of our application.

public class MyApplication extends Application<MyConfiguration>{
@Override
public void initialize(Bootstrap<DropwizardConfiguration> bootstrap) {

bootstrap.addCommand(new MyCommand());
}

}

To invoke the new functionality, run the following:

java -jar <jarfile> hello dropwizard

Configured Commands

Some commands require access to configuration parameters and should extend the ConfiguredCommand class,
using your application’s Configuration class as its type parameter. By default, Dropwizard will treat the last
argument on the command line as the path to a YAML configuration file, parse and validate it, and provide your
command with an instance of the configuration class.

A ConfiguredCommand can have additional command line options specified, while keeping the last argument the
path to the YAML configuration.

@Override
public void configure(Subparser subparser) {

super.configure(subparser);

// Add a command line option
subparser.addArgument("-u", "--user")

.dest("user")

.type(String.class)

.required(true)

.help("The user of the program");
}

For more advanced customization of the command line (for example, having the configuration file location specified
by -c), adapt the ConfiguredCommand class as needed.

2.1.10 Tasks

A Task is a run-time action your application provides access to on the administrative port via HTTP. All Drop-
wizard applications start with: the gc task, which explicitly triggers the JVM’s garbage collection (This is useful,
for example, for running full garbage collections during off-peak times or while the given application is out of ro-
tation.); and the log-level task, which configures the level of any number of loggers at runtime (akin to Log-
back’s JmxConfigurator). The execute method of a Task can be annotated with @Timed, @Metered, and
@ExceptionMetered. Dropwizard will automatically record runtime information about your tasks. Here’s a basic
task class:

26 Chapter 2. User Manual

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-core/src/main/java/io/dropwizard/cli/ConfiguredCommand.java

Dropwizard Documentation, Release @project.version@

public class TruncateDatabaseTask extends Task {
private final Database database;

public TruncateDatabaseTask(Database database) {
super("truncate");
this.database = database;

}

@Override
public void execute(ImmutableMultimap<String, String> parameters, PrintWriter

→˓output) throws Exception {
this.database.truncate();

}
}

You can then add this task to your application’s environment:

environment.admin().addTask(new TruncateDatabaseTask(database));

Running a task can be done by sending a POST request to /tasks/{task-name} on the admin port. For example:

$ curl -X POST http://dw.example.com:8081/tasks/gc
Running GC...
Done!

2.1.11 Logging

Dropwizard uses Logback for its logging backend. It provides an slf4j implementation, and even routes all java.
util.logging, Log4j, and Apache Commons Logging usage through Logback.

slf4j provides the following logging levels:

ERROR Error events that might still allow the application to continue running.

WARN Potentially harmful situations.

INFO Informational messages that highlight the progress of the application at coarse-grained level.

DEBUG Fine-grained informational events that are most useful to debug an application.

TRACE Finer-grained informational events than the DEBUG level.

Log Format

Dropwizard’s log format has a few specific goals:

• Be human readable.

• Be machine parsable.

• Be easy for sleepy ops folks to figure out why things are pear-shaped at 3:30AM using standard UNIXy tools
like tail and grep.

The logging output looks like this:

TRACE [2010-04-06 06:42:35,271] com.example.dw.Thing: Contemplating doing a thing.
DEBUG [2010-04-06 06:42:35,274] com.example.dw.Thing: About to do a thing.
INFO [2010-04-06 06:42:35,274] com.example.dw.Thing: Doing a thing

(continues on next page)

2.1. Dropwizard Core 27

http://logback.qos.ch/
http://www.slf4j.org/

Dropwizard Documentation, Release @project.version@

(continued from previous page)

WARN [2010-04-06 06:42:35,275] com.example.dw.Thing: Doing a thing
ERROR [2010-04-06 06:42:35,275] com.example.dw.Thing: This may get ugly.
! java.lang.RuntimeException: oh noes!
! at com.example.dw.Thing.run(Thing.java:16)
!

A few items of note:

• All timestamps are in UTC and ISO 8601 format.

• You can grep for messages of a specific level really easily:

tail -f dw.log | grep '^WARN'

• You can grep for messages from a specific class or package really easily:

tail -f dw.log | grep 'com.example.dw.Thing'

• You can even pull out full exception stack traces, plus the accompanying log message:

tail -f dw.log | grep -B 1 '^\!'

• The ! prefix does not apply to syslog appenders, as stack traces are sent separately from the main message.
Instead, t is used (this is the default value of the SyslogAppender that comes with Logback). This can be
configured with the stackTracePrefix option when defining your appender.

Configuration

You can specify a default logger level, override the levels of other loggers in your YAML configuration file, and even
specify appenders for them. The latter form of configuration is preferable, but the former is also acceptable.

Logging settings.
logging:

The default level of all loggers. Can be OFF, ERROR, WARN, INFO, DEBUG, TRACE, or
→˓ALL.
level: INFO

Logger-specific levels.
loggers:

Overrides the level of com.example.dw.Thing and sets it to DEBUG.
"com.example.dw.Thing": DEBUG

Enables the SQL query log and redirect it to a separate file
"org.hibernate.SQL":
level: DEBUG
This line stops org.hibernate.SQL (or anything under it) from using the root

→˓logger
additive: false
appenders:
- type: file
currentLogFilename: ./logs/example-sql.log
archivedLogFilenamePattern: ./logs/example-sql-%d.log.gz
archivedFileCount: 5

28 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

Console Logging

By default, Dropwizard applications log INFO and higher to STDOUT. You can configure this by editing the logging
section of your YAML configuration file:

logging:
appenders:
- type: console

threshold: WARN
target: stderr

In the above, we’re instead logging only WARN and ERROR messages to the STDERR device.

File Logging

Dropwizard can also log to an automatically rotated set of log files. This is the recommended configuration for your
production environment:

logging:

appenders:
- type: file

The file to which current statements will be logged.
currentLogFilename: ./logs/example.log

When the log file rotates, the archived log will be renamed to this and
→˓gzipped. The

%d is replaced with the previous day (yyyy-MM-dd). Custom rolling windows can
→˓be created

by passing a SimpleDateFormat-compatible format as an argument: "%d{yyyy-MM-
→˓dd-hh}".

archivedLogFilenamePattern: ./logs/example-%d.log.gz

The number of archived files to keep.
archivedFileCount: 5

The timezone used to format dates. HINT: USE THE DEFAULT, UTC.
timeZone: UTC

Syslog Logging

Finally, Dropwizard can also log statements to syslog.

Note: Because Java doesn’t use the native syslog bindings, your syslog server must have an open network socket.

logging:

appenders:
- type: syslog

The hostname of the syslog server to which statements will be sent.
N.B.: If this is the local host, the local syslog instance will need to be

→˓configured to
listen on an inet socket, not just a Unix socket.

(continues on next page)

2.1. Dropwizard Core 29

Dropwizard Documentation, Release @project.version@

(continued from previous page)

host: localhost

The syslog facility to which statements will be sent.
facility: local0

You can combine any number of different appenders, including multiple instances of the same appender with
different configurations:

logging:

Permit DEBUG, INFO, WARN and ERROR messages to be logged by appenders.
level: DEBUG

appenders:
Log warnings and errors to stderr
- type: console

threshold: WARN
target: stderr

Log info, warnings and errors to our apps' main log.
Rolled over daily and retained for 5 days.
- type: file

threshold: INFO
currentLogFilename: ./logs/example.log
archivedLogFilenamePattern: ./logs/example-%d.log.gz
archivedFileCount: 5

Log debug messages, info, warnings and errors to our apps' debug log.
Rolled over hourly and retained for 6 hours
- type: file

threshold: DEBUG
currentLogFilename: ./logs/debug.log
archivedLogFilenamePattern: ./logs/debug-%d{yyyy-MM-dd-hh}.log.gz
archivedFileCount: 6

Logging Configuration via HTTP

Active log levels can be changed during the runtime of a Dropwizard application via HTTP using the
LogConfigurationTask. For instance, to configure the log level for a single Logger:

curl -X POST -d "logger=com.example.helloworld&level=INFO" http://localhost:8081/
→˓tasks/log-level

2.1.12 Testing Applications

All of Dropwizard’s APIs are designed with testability in mind, so even your applications can have unit tests:

public class MyApplicationTest {
private final Environment environment = mock(Environment.class);
private final JerseyEnvironment jersey = mock(JerseyEnvironment.class);
private final MyApplication application = new MyApplication();
private final MyConfiguration config = new MyConfiguration();

(continues on next page)

30 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

(continued from previous page)

@Before
public void setup() throws Exception {

config.setMyParam("yay");
when(environment.jersey()).thenReturn(jersey);

}

@Test
public void buildsAThingResource() throws Exception {

application.run(config, environment);

verify(jersey).register(isA(ThingResource.class));
}

}

We highly recommend Mockito for all your mocking needs.

2.1.13 Banners

We think applications should print out a big ASCII art banner on startup. Yours should, too. It’s fun. Just add a
banner.txt class to src/main/resources and it’ll print it out when your application starts:

INFO [2011-12-09 21:56:37,209] io.dropwizard.cli.ServerCommand: Starting hello-world
dP
88

.d8888b. dP. .dP .d8888b. 88d8b.d8b. 88d888b. 88 .d8888b.
88ooood8 `8bd8' 88' `88 88'`88'`88 88' `88 88 88ooood8
88.d88b. 88. .88 88 88 88 88. .88 88 88. ...
`88888P' dP' `dP `88888P8 dP dP dP 88Y888P' dP `88888P'

88
dP

INFO [2011-12-09 21:56:37,214] org.eclipse.jetty.server.Server: jetty-7.6.0
...

We could probably make up an argument about why this is a serious devops best practice with high ROI and an Agile
Tool, but honestly we just enjoy this.

We recommend you use TAAG for all your ASCII art banner needs.

2.1.14 Resources

Unsurprisingly, most of your day-to-day work with a Dropwizard application will be in the resource classes, which
model the resources exposed in your RESTful API. Dropwizard uses Jersey for this, so most of this section is just
re-hashing or collecting various bits of Jersey documentation.

Jersey is a framework for mapping various aspects of incoming HTTP requests to POJOs and then mapping various
aspects of POJOs to outgoing HTTP responses. Here’s a basic resource class:

@Path("/{user}/notifications")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class NotificationsResource {

private final NotificationStore store;

(continues on next page)

2.1. Dropwizard Core 31

http://code.google.com/p/mockito/
http://patorjk.com/software/taag/
http://jersey.java.net/

Dropwizard Documentation, Release @project.version@

(continued from previous page)

public NotificationsResource(NotificationStore store) {
this.store = store;

}

@GET
public NotificationList fetch(@PathParam("user") LongParam userId,

@QueryParam("count") @DefaultValue("20") IntParam
→˓count) {

final List<Notification> notifications = store.fetch(userId.get(), count.
→˓get());

if (notifications != null) {
return new NotificationList(userId, notifications);

}
throw new WebApplicationException(Status.NOT_FOUND);

}

@POST
public Response add(@PathParam("user") LongParam userId,

@NotNull @Valid Notification notification) {
final long id = store.add(userId.get(), notification);
return Response.created(UriBuilder.fromResource(NotificationResource.class)

.build(userId.get(), id))
.build();

}
}

This class provides a resource (a user’s list of notifications) which responds to GET and POST requests to /{user}/
notifications, providing and consuming application/json representations. There’s quite a lot of func-
tionality on display here, and this section will explain in detail what’s in play and how to use these features in your
application.

Paths

Important: Every resource class must have a @Path annotation.

The @Path annotation isn’t just a static string, it’s a URI Template. The {user} part denotes a named variable, and
when the template matches a URI the value of that variable will be accessible via @PathParam-annotated method
parameters.

For example, an incoming request for /1001/notifications would match the URI template, and the value
"1001" would be available as the path parameter named user.

If your application doesn’t have a resource class whose @Path URI template matches the URI of an incoming request,
Jersey will automatically return a 404 Not Found to the client.

Methods

Methods on a resource class which accept incoming requests are annotated with the HTTP methods they handle:
@GET, @POST, @PUT, @DELETE, @HEAD, @OPTIONS, @PATCH.

Support for arbitrary new methods can be added via the @HttpMethod annotation. They also must be added to the
list of allowed methods. This means, by default, methods such as CONNECT and TRACE are blocked, and will return
a 405 Method Not Allowed response.

32 Chapter 2. User Manual

http://tools.ietf.org/html/draft-gregorio-uritemplate-07

Dropwizard Documentation, Release @project.version@

If a request comes in which matches a resource class’s path but has a method which the class doesn’t support, Jersey
will automatically return a 405 Method Not Allowed to the client.

The return value of the method (in this case, a NotificationList instance) is then mapped to the negotiated
media type this case, our resource only supports JSON, and so the NotificationList is serialized to JSON using
Jackson.

Metrics

Every resource method can be annotated with @Timed, @Metered, and @ExceptionMetered. Dropwizard
augments Jersey to automatically record runtime information about your resource methods.

• @Timed measures the duration of requests to a resource

• @Metered measures the rate at which the resource is accessed

• @ExceptionMetered measures how often exceptions occur processing the resource

Parameters

The annotated methods on a resource class can accept parameters which are mapped to from aspects of the incoming
request. The *Param annotations determine which part of the request the data is mapped, and the parameter type
determines how the data is mapped.

For example:

• A @PathParam("user")-annotated String takes the raw value from the user variable in the matched
URI template and passes it into the method as a String.

• A @QueryParam("count")-annotated IntParam parameter takes the first count value from the re-
quest’s query string and passes it as a String to IntParam’s constructor. IntParam (and all other
io.dropwizard.jersey.params.* classes) parses the string as an Integer, returning a 400 Bad
Request if the value is malformed.

• A @FormParam("name")-annotated Set<String> parameter takes all the name values from a posted
form and passes them to the method as a set of strings.

• A *Param–annotated NonEmptyStringParamwill interpret empty strings as absent strings, which is useful
in cases where the endpoint treats empty strings and absent strings as interchangeable.

What’s noteworthy here is that you can actually encapsulate the vast majority of your validation logic using specialized
parameter objects. See AbstractParam for details.

Request Entities

If you’re handling request entities (e.g., an application/json object on a PUT request), you can model this as a
parameter without a *Param annotation. In the example code, the add method provides a good example of this:

@POST
public Response add(@PathParam("user") LongParam userId,

@NotNull @Valid Notification notification) {
final long id = store.add(userId.get(), notification);
return Response.created(UriBuilder.fromResource(NotificationResource.class)

.build(userId.get(), id)
.build();

}

2.1. Dropwizard Core 33

Dropwizard Documentation, Release @project.version@

Jersey maps the request entity to any single, unbound parameter. In this case, because the resource is annotated with
@Consumes(MediaType.APPLICATION_JSON), it uses the Dropwizard-provided Jackson support which, in
addition to parsing the JSON and mapping it to an instance of Notification, also runs that instance through
Dropwizard’s Constraining Entities.

If the deserialized Notification isn’t valid, Dropwizard returns a 422 Unprocessable Entity response to
the client.

Note: If a request entity parameter is just annotated with @Valid, it is still allowed to be null, so to ensure that the
object is present and validated @NotNull @Valid is a powerful combination.

Media Types

Jersey also provides full content negotiation, so if your resource class consumes application/json but the client
sends a text/plain entity, Jersey will automatically reply with a 406 Not Acceptable. Jersey’s even smart
enough to use client-provided q-values in their Accept headers to pick the best response content type based on what
both the client and server will support.

Responses

If your clients are expecting custom headers or additional information (or, if you simply desire an additional degree of
control over your responses), you can return explicitly-built Response objects:

return Response.noContent().language(Locale.GERMAN).build();

In general, though, we recommend you return actual domain objects if at all possible. It makes testing resources much
easier.

Error Handling

Almost as important as an application’s happy path (receiving expected input and returning expected output) is an
application behavior when something goes wrong.

If your resource class unintentionally throws an exception, Dropwizard will log that exception under the ERROR
level (including stack traces) and return a terse, safe application/json 500 Internal Server Error
response. The response will contain an ID that can be grepped out the server logs for additional information.

If your resource class needs to return an error to the client (e.g., the requested record doesn’t exist), you have two
options: throw a subclass of Exception or restructure your method to return a Response. If at all possible, prefer
throwing Exception instances to returning Response objects, as that will make resource endpoints more self
describing and easier to test.

The least instrusive way to map error conditions to a response is to throw a WebApplicationException:

@GET
@Path("/{collection}")
public Saying reduceCols(@PathParam("collection") String collection) {

if (!collectionMap.containsKey(collection)) {
final String msg = String.format("Collection %s does not exist", collection);
throw new WebApplicationException(msg, Status.NOT_FOUND)

}

(continues on next page)

34 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

(continued from previous page)

// ...
}

In this example a GET request to /foobar will return

{"code":404,"message":"Collection foobar does not exist"}

One can also take exceptions that your resource may throw and map them to appropriate responses. For instance,
an endpoint may throw IllegalArgumentException and it may be worthy enough of a response to warrant a
custom metric to track how often the event occurs. Here’s an example of such an ExceptionMapper

public class IllegalArgumentExceptionMapper implements ExceptionMapper
→˓<IllegalArgumentException> {

private final Meter exceptions;
public IllegalArgumentExceptionMapper(MetricRegistry metrics) {

exceptions = metrics.meter(name(getClass(), "exceptions"));
}

@Override
public Response toResponse(IllegalArgumentException e) {

exceptions.mark();
return Response.status(Status.BAD_REQUEST)

.header("X-YOU-SILLY", "true")

.type(MediaType.APPLICATION_JSON_TYPE)

.entity(new ErrorMessage(Status.BAD_REQUEST.getStatusCode(),
"You passed an illegal argument!"))

.build();
}

}

and then registering the exception mapper:

@Override
public void run(final MyConfiguration conf, final Environment env) {

env.jersey().register(new IllegalArgumentExceptionMapper(env.metrics()));
env.jersey().register(new Resource());

}

Overriding Default Exception Mappers

If you want more control, you can disable the exception mappers Dropwizard provides by default. This is done by
setting server.registerDefaultExceptionMappers to false. Since this disables all default exception
mappers make sure to re-enable exception mappers that are wanted. The default exception mappers are:

• LoggingExceptionMapper<Throwable>

• JerseyViolationExceptionMapper

• JsonProcessingExceptionMapper

• EarlyEofExceptionMapper

URIs

While Jersey doesn’t quite have first-class support for hyperlink-driven applications, the provided UriBuilder
functionality does quite well.

2.1. Dropwizard Core 35

Dropwizard Documentation, Release @project.version@

Rather than duplicate resource URIs, it’s possible (and recommended!) to initialize a UriBuilder with the path
from the resource class itself:

UriBuilder.fromResource(UserResource.class).build(user.getId());

Testing

As with just about everything in Dropwizard, we recommend you design your resources to be testable. Dependencies
which aren’t request-injected should be passed in via the constructor and assigned to final fields.

Testing, then, consists of creating an instance of your resource class and passing it a mock. (Again: Mockito.)

public class NotificationsResourceTest {
private final NotificationStore store = mock(NotificationStore.class);
private final NotificationsResource resource = new NotificationsResource(store);

@Test
public void getsReturnNotifications() {

final List<Notification> notifications = mock(List.class);
when(store.fetch(1, 20)).thenReturn(notifications);

final NotificationList list = resource.fetch(new LongParam("1"), new IntParam(
→˓"20"));

assertThat(list.getUserId(),
is(1L));

assertThat(list.getNotifications(),
is(notifications));

}
}

Caching

Adding a Cache-Control statement to your resource class is simple with Dropwizard:

@GET
@CacheControl(maxAge = 6, maxAgeUnit = TimeUnit.HOURS)
public String getCachableValue() {

return "yay";
}

The @CacheControl annotation will take all of the parameters of the Cache-Control header.

2.1.15 Representations

Representation classes are classes which, when handled to various Jersey MessageBodyReader and
MessageBodyWriter providers, become the entities in your application’s API. Dropwizard heavily favors JSON,
but it’s possible to map from any POJO to custom formats and back.

Basic JSON

Jackson is awesome at converting regular POJOs to JSON and back. This file:

36 Chapter 2. User Manual

http://code.google.com/p/mockito/

Dropwizard Documentation, Release @project.version@

public class Notification {
private String text;

public Notification(String text) {
this.text = text;

}

@JsonProperty
public String getText() {

return text;
}

@JsonProperty
public void setText(String text) {

this.text = text;
}

}

gets converted into this JSON:

{
"text": "hey it's the value of the text field"

}

If, at some point, you need to change the JSON field name or the Java field without affecting the other, you can add an
explicit field name to the @JsonProperty annotation.

If you prefer immutable objects rather than JavaBeans, that’s also doable:

public class Notification {
private final String text;

@JsonCreator
public Notification(@JsonProperty("text") String text) {

this.text = text;
}

@JsonProperty("text")
public String getText() {

return text;
}

}

Advanced JSON

Not all JSON representations map nicely to the objects your application deals with, so it’s sometimes necessary to use
custom serializers and deserializers. Just annotate your object like this:

@JsonSerialize(using=FunkySerializer.class)
@JsonDeserialize(using=FunkyDeserializer.class)
public class Funky {

// ...
}

Then make a FunkySerializer class which implements JsonSerializer<Funky> and a
FunkyDeserializer class which implements JsonDeserializer<Funky>.

2.1. Dropwizard Core 37

Dropwizard Documentation, Release @project.version@

A common issue with JSON is the disagreement between camelCase and snake_case field names. Java and
Javascript folks tend to like camelCase; Ruby, Python, and Perl folks insist on snake_case. To make Dropwizard
automatically convert field names to snake_case (and back), just annotate the class with @JsonSnakeCase:

@JsonSnakeCase
public class Person {

private final String firstName;

@JsonCreator
public Person(@JsonProperty String firstName) {

this.firstName = firstName;
}

@JsonProperty
public String getFirstName() {

return firstName;
}

}

This gets converted into this JSON:

{
"first_name": "Coda"

}

Streaming Output

If your application happens to return lots of information, you may get a big performance and efficiency bump by using
streaming output. By returning an object which implements Jersey’s StreamingOutput interface, your method
can stream the response entity in a chunk-encoded output stream. Otherwise, you’ll need to fully construct your return
value and then hand it off to be sent to the client.

HTML Representations

For generating HTML pages, check out Dropwizard’s views support.

Custom Representations

Sometimes, though, you’ve got some wacky output format you need to produce or consume and no amount of arguing
will make JSON acceptable. That’s unfortunate but OK. You can add support for arbitrary input and output for-
mats by creating classes which implement Jersey’s MessageBodyReader<T> and MessageBodyWriter<T>
interfaces. (Make sure they’re annotated with @Provider and @Produces("text/gibberish") or
@Consumes("text/gibberish").) Once you’re done, just add instances of them (or their classes if they depend
on Jersey’s @Context injection) to your application’s Environment on initialization.

Jersey filters

There might be cases when you want to filter out requests or modify them before they reach your Resources. Jersey has
a rich api for filters and interceptors that can be used directly in Dropwizard. You can stop the request from reaching
your resources by throwing a WebApplicationException. Alternatively, you can use filters to modify inbound
requests or outbound responses.

38 Chapter 2. User Manual

http://jersey.java.net/documentation/latest/filters-and-interceptors.html

Dropwizard Documentation, Release @project.version@

@Provider
public class DateNotSpecifiedFilter implements ContainerRequestFilter {

@Override
public void filter(ContainerRequestContext requestContext) throws IOException {

String dateHeader = requestContext.getHeaderString(HttpHeaders.DATE);

if (dateHeader == null) {
Exception cause = new IllegalArgumentException("Date Header was not

→˓specified");
throw new WebApplicationException(cause, Response.Status.BAD_REQUEST);

}
}

}

This example filter checks the request for the “Date” header, and denies the request if was missing. Otherwise, the
request is passed through.

Filters can be dynamically bound to resource methods using DynamicFeature:

@Provider
public class DateRequiredFeature implements DynamicFeature {

@Override
public void configure(ResourceInfo resourceInfo, FeatureContext context) {

if (resourceInfo.getResourceMethod().getAnnotation(DateRequired.class) !=
→˓null) {

context.register(DateNotSpecifiedFilter.class);
}

}
}

The DynamicFeature is invoked by the Jersey runtime when the application is started. In this example, the feature
checks for methods that are annotated with @DateRequired and registers the DateNotSpecified filter on
those methods only.

You typically register the feature in your Application class, like so:

environment.jersey().register(DateRequiredFeature.class);

Servlet filters

Another way to create filters is by creating servlet filters. They offer a way to to register filters that apply both to servlet
requests as well as resource requests. Jetty comes with a few bundled filters which may already suit your needs. If you
want to create your own filter, this example demonstrates a servlet filter analogous to the previous example:

public class DateNotSpecifiedServletFilter implements javax.servlet.Filter {
// Other methods in interface omitted for brevity

@Override
public void doFilter(ServletRequest request, ServletResponse response,

→˓FilterChain chain) throws IOException, ServletException {
if (request instanceof HttpServletRequest) {

String dateHeader = ((HttpServletRequest) request).getHeader(HttpHeaders.
→˓DATE);

if (dateHeader != null) {
chain.doFilter(request, response); // This signals that the request

→˓should pass this filter
(continues on next page)

2.1. Dropwizard Core 39

http://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html
http://www.eclipse.org/jetty/documentation/current/advanced-extras.html

Dropwizard Documentation, Release @project.version@

(continued from previous page)

} else {
HttpServletResponse httpResponse = (HttpServletResponse) response;
httpResponse.setStatus(HttpStatus.BAD_REQUEST_400);
httpResponse.getWriter().print("Date Header was not specified");

}
}

}
}

This servlet filter can then be registered in your Application class by wrapping it in FilterHolder and adding it to
the application context together with a specification for which paths this filter should active. Here’s an example:

environment.servlets().addFilter("DateNotSpecifiedServletFilter", new
→˓DateNotSpecifiedServletFilter())

.addMappingForUrlPatterns(EnumSet.of(DispatcherType.REQUEST),
→˓true, "/*");

2.1.16 How it’s glued together

When your application starts up, it will spin up a Jetty HTTP server, see DefaultServerFactory. This server
will have two handlers, one for your application port and the other for your admin port. The admin handler creates
and registers the AdminServlet. This has a handle to all of the application healthchecks and metrics via the
ServletContext.

The application port has an HttpServlet as well, this is composed of DropwizardResourceConfig, which
is an extension of Jersey’s resource configuration that performs scanning to find root resource and provider
classes. Ultimately when you call env.jersey().register(new SomeResource()), you are adding to
the DropwizardResourceConfig. This config is a jersey Application, so all of your application resources
are served from one Servlet

DropwizardResourceConfig is where the various ResourceMethodDispatchAdapter are registered to enable
the following functionality:

• Resource method requests with @Timed, @Metered, @ExceptionMetered are delegated to special dis-
patchers which decorate the metric telemetry

• Resources that return Guava Optional are unboxed. Present returns underlying type, and non-present 404s

• Resource methods that are annotated with @CacheControl are delegated to a special dispatcher that decorates
on the cache control headers

• Enables using Jackson to parse request entities into objects and generate response entities from objects, all while
performing validation

2.2 Dropwizard Client

The dropwizard-client module provides you with two different performant, instrumented HTTP
clients so you can integrate your service with other web services: Apache HttpClient and Jersey
Client.

2.2.1 Apache HttpClient

The underlying library for dropwizard-client is Apache’s HttpClient, a full-featured, well-tested HTTP client
library.

40 Chapter 2. User Manual

http://hc.apache.org/httpcomponents-core-4.3.x/index.html

Dropwizard Documentation, Release @project.version@

To create a managed, instrumented HttpClient instance, your configuration class needs an http client configuration
instance:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
private HttpClientConfiguration httpClient = new HttpClientConfiguration();

@JsonProperty("httpClient")
public HttpClientConfiguration getHttpClientConfiguration() {

return httpClient;
}

@JsonProperty("httpClient")
public void setHttpClientConfiguration(HttpClientConfiguration httpClient) {

this.httpClient = httpClient;
}

}

Then, in your application’s run method, create a new HttpClientBuilder:

@Override
public void run(ExampleConfiguration config,

Environment environment) {
final HttpClient httpClient = new HttpClientBuilder(environment).using(config.

→˓getHttpClientConfiguration())
.build();

environment.jersey().register(new ExternalServiceResource(httpClient));
}

Metrics

Dropwizard’s HttpClientBuilder actually gives you an instrumented subclass which tracks the following pieces
of data:

org.apache.http.conn.ClientConnectionManager.available-connections The number the
number idle connections ready to be used to execute requests.

org.apache.http.conn.ClientConnectionManager.leased-connections The number of per-
sistent connections currently being used to execute requests.

org.apache.http.conn.ClientConnectionManager.max-connections The maximum number of
allowed connections.

org.apache.http.conn.ClientConnectionManager.pending-connections The number of con-
nection requests being blocked awaiting a free connection

org.apache.http.client.HttpClient.get-requests The rate at which GET requests are being sent.

org.apache.http.client.HttpClient.post-requests The rate at which POST requests are being
sent.

org.apache.http.client.HttpClient.head-requests The rate at which HEAD requests are being
sent.

org.apache.http.client.HttpClient.put-requests The rate at which PUT requests are being sent.

org.apache.http.client.HttpClient.delete-requests The rate at which DELETE requests are be-
ing sent.

2.2. Dropwizard Client 41

Dropwizard Documentation, Release @project.version@

org.apache.http.client.HttpClient.options-requests The rate at which OPTIONS requests are
being sent.

org.apache.http.client.HttpClient.trace-requests The rate at which TRACE requests are being
sent.

org.apache.http.client.HttpClient.connect-requests The rate at which CONNECT requests are
being sent.

org.apache.http.client.HttpClient.move-requests The rate at which MOVE requests are being
sent.

org.apache.http.client.HttpClient.patch-requests The rate at which PATCH requests are being
sent.

org.apache.http.client.HttpClient.other-requests The rate at which requests with none of the
above methods are being sent.

Note: The naming strategy for the metrics associated requests is configurable. Specifically, the last part e.g. get-
requests. What is displayed is HttpClientMetricNameStrategies.METHOD_ONLY, you can also include
the host via HttpClientMetricNameStrategies.HOST_AND_METHOD or a url without query string via
HttpClientMetricNameStrategies.QUERYLESS_URL_AND_METHOD

2.2.2 Jersey Client

If HttpClient is too low-level for you, Dropwizard also supports Jersey’s Client API. Jersey’s Client allows you to
use all of the server-side media type support that your service uses to, for example, deserialize application/json
request entities as POJOs.

To create a managed, instrumented JerseyClient instance, your configuration class needs an jersey client config-
uration instance:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
private JerseyClientConfiguration jerseyClient = new JerseyClientConfiguration();

@JsonProperty("jerseyClient")
public JerseyClientConfiguration getJerseyClientConfiguration() {

return jerseyClient;
}

}

Then, in your service’s run method, create a new JerseyClientBuilder:

@Override
public void run(ExampleConfiguration config,

Environment environment) {

final Client client = new JerseyClientBuilder(environment).using(config.
→˓getJerseyClientConfiguration())

.build(getName());
environment.jersey().register(new ExternalServiceResource(client));

}

42 Chapter 2. User Manual

http://hc.apache.org/httpcomponents-core-4.3.x/index.html
https://jersey.java.net/documentation/2.22.1/client.html

Dropwizard Documentation, Release @project.version@

Configuration

The Client that Dropwizard creates deviates from the Jersey Client Configuration defaults. The default, in Jersey, is
for a client to never timeout reading or connecting in a request, while in Dropwizard, the default is 500 milliseconds.

There are a couple of ways to change this behavior. The recommended way is to modify the YAML configuration.
Alternatively, set the properties on the JerseyClientConfiguration, which will take effect for all built clients.
On a per client basis, the configuration can be changed by utilizing the property method and, in this case, the Jersey
Client Properties can be used.

Warning: Do not try to change Jersey properties using Jersey Client Properties through the

withProperty(String propertyName, Object propertyValue)

method on the JerseyClientBuilder, because by default it’s configured by Dropwizard’s
HttpClientBuilder, so the Jersey properties are ignored.

2.3 Dropwizard JDBI

The dropwizard-jdbi module provides you with managed access to JDBI, a flexible and modular
library for interacting with relational databases via SQL.

2.3.1 Configuration

To create a managed, instrumented DBI instance, your configuration class needs a DataSourceFactory instance:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
private DataSourceFactory database = new DataSourceFactory();

@JsonProperty("database")
public void setDataSourceFactory(DataSourceFactory factory) {

this.database = factory;
}

@JsonProperty("database")
public DataSourceFactory getDataSourceFactory() {

return database;
}

}

Then, in your service’s run method, create a new DBIFactory:

@Override
public void run(ExampleConfiguration config, Environment environment) {

final DBIFactory factory = new DBIFactory();
final DBI jdbi = factory.build(environment, config.getDataSourceFactory(),

→˓"postgresql");
final UserDAO dao = jdbi.onDemand(UserDAO.class);
environment.jersey().register(new UserResource(dao));

}

2.3. Dropwizard JDBI 43

https://jersey.java.net/apidocs/2.22/jersey/org/glassfish/jersey/client/ClientProperties.html
https://jersey.java.net/apidocs/2.22/jersey/org/glassfish/jersey/client/ClientProperties.html
https://jersey.java.net/apidocs/2.22/jersey/org/glassfish/jersey/client/ClientProperties.html

Dropwizard Documentation, Release @project.version@

This will create a new managed connection pool to the database, a health check for connectivity to the database, and
a new DBI instance for you to use.

Your service’s configuration file will then look like this:

database:
the name of your JDBC driver
driverClass: org.postgresql.Driver

the username
user: pg-user

the password
password: iAMs00perSecrEET

the JDBC URL
url: jdbc:postgresql://db.example.com/db-prod

any properties specific to your JDBC driver:
properties:
charSet: UTF-8

the maximum amount of time to wait on an empty pool before throwing an exception
maxWaitForConnection: 1s

the SQL query to run when validating a connection's liveness
validationQuery: "/* MyService Health Check */ SELECT 1"

the timeout before a connection validation queries fail
validationQueryTimeout: 3s

the minimum number of connections to keep open
minSize: 8

the maximum number of connections to keep open
maxSize: 32

whether or not idle connections should be validated
checkConnectionWhileIdle: false

the amount of time to sleep between runs of the idle connection validation,
→˓abandoned cleaner and idle pool resizing
evictionInterval: 10s

the minimum amount of time an connection must sit idle in the pool before it is
→˓eligible for eviction
minIdleTime: 1 minute

2.3.2 Usage

We highly recommend you use JDBI’s SQL Objects API, which allows you to write DAO classes as interfaces:

public interface MyDAO {
@SqlUpdate("create table something (id int primary key, name varchar(100))")
void createSomethingTable();

@SqlUpdate("insert into something (id, name) values (:id, :name)")
(continues on next page)

44 Chapter 2. User Manual

http://jdbi.org/sql_object_overview/

Dropwizard Documentation, Release @project.version@

(continued from previous page)

void insert(@Bind("id") int id, @Bind("name") String name);

@SqlQuery("select name from something where id = :id")
String findNameById(@Bind("id") int id);

}

final MyDAO dao = database.onDemand(MyDAO.class);

This ensures your DAO classes are trivially mockable, as well as encouraging you to extract mapping code (e.g.,
ResultSet -> domain objects) into testable, reusable classes.

2.3.3 Exception Handling

By adding the DBIExceptionsBundle to your application, Dropwizard will automatically unwrap any thrown
SQLException or DBIException instances. This is critical for debugging, since otherwise only the common
wrapper exception’s stack trace is logged.

2.3.4 Prepended Comments

If you’re using JDBI’s SQL Objects API (and you should be), dropwizard-jdbi will automatically prepend the
SQL object’s class and method name to the SQL query as an SQL comment:

/* com.example.service.dao.UserDAO.findByName */
SELECT id, name, email
FROM users
WHERE name = 'Coda';

This will allow you to quickly determine the origin of any slow or misbehaving queries.

2.3.5 Library Support

dropwizard-jdbi supports a number of popular libraries data types that can be automatically serialized into the
appropriate SQL type. Here’s a list of what integration dropwizard-jdbi provides:

• Guava: support for Optional<T> arguments and ImmutableList<T> and ImmutableSet<T> query
results.

• Joda Time: support for DateTime arguments and DateTime fields in query results

• Java 8: support for Optional<T> and kin (OptionalInt, etc.) arguments and java.time arguments.

2.4 Dropwizard Migrations

The dropwizard-migrations module provides you with a wrapper for Liquibase database refac-
toring.

2.4.1 Configuration

Like Dropwizard JDBI, your configuration class needs a DataSourceFactory instance:

2.4. Dropwizard Migrations 45

http://jdbi.org/sql_object_overview/
https://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html

Dropwizard Documentation, Release @project.version@

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
private DataSourceFactory database = new DataSourceFactory();

@JsonProperty("database")
public DataSourceFactory getDataSourceFactory() {

return database;
}

}

2.4.2 Adding The Bundle

Then, in your application’s initialize method, add a new MigrationsBundle subclass:

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {

bootstrap.addBundle(new MigrationsBundle<ExampleConfiguration>() {
@Override
public DataSourceFactory getDataSourceFactory(ExampleConfiguration

→˓configuration) {
return configuration.getDataSourceFactory();

}
});

}

2.4.3 Defining Migrations

Your database migrations are stored in your Dropwizard project, in src/main/resources/migrations.xml.
This file will be packaged with your application, allowing you to run migrations using your application’s command-line
interface. You can change the name of the migrations file used by overriding the getMigrationsFileName()
method in MigrationsBundle.

For example, to create a new people table, you might create an initial migrations.xml like this:

<?xml version="1.0" encoding="UTF-8"?>

<databaseChangeLog
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.1.xsd">

<changeSet id="1" author="codahale">
<createTable tableName="people">

<column name="id" type="bigint" autoIncrement="true">
<constraints primaryKey="true" nullable="false"/>

</column>
<column name="fullName" type="varchar(255)">

<constraints nullable="false"/>
</column>
<column name="jobTitle" type="varchar(255)"/>

</createTable>
</changeSet>

</databaseChangeLog>

46 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

For more information on available database refactorings, check the Liquibase documentation.

2.4.4 Checking Your Database’s State

To check the state of your database, use the db status command:

java -jar hello-world.jar db status helloworld.yml

2.4.5 Dumping Your Schema

If your database already has an existing schema and you’d like to pre-seed your migrations.xml document, you
can run the db dump command:

java -jar hello-world.jar db dump helloworld.yml

This will output a Liquibase change log with a changeset capable of recreating your database.

2.4.6 Tagging Your Schema

To tag your schema at a particular point in time (e.g., to make rolling back easier), use the db tag command:

java -jar hello-world.jar db tag helloworld.yml 2012-10-08-pre-user-move

2.4.7 Migrating Your Schema

To apply pending changesets to your database schema, run the db migrate command:

java -jar hello-world.jar db migrate helloworld.yml

Warning: This will potentially make irreversible changes to your database. Always check the pending DDL
scripts by using the --dry-run flag first. This will output the SQL to be run to stdout.

Note: To apply only a specific number of pending changesets, use the --count flag.

2.4.8 Rolling Back Your Schema

To roll back changesets which have already been applied, run the db rollback command. You will need to specify
either a tag, a date, or a number of changesets to roll back to:

java -jar hello-world.jar db rollback helloworld.yml --tag 2012-10-08-pre-user-move

Warning: This will potentially make irreversible changes to your database. Always check the pending DDL
scripts by using the --dry-run flag first. This will output the SQL to be run to stdout.

2.4. Dropwizard Migrations 47

http://www.liquibase.org
http://www.liquibase.org

Dropwizard Documentation, Release @project.version@

2.4.9 Testing Migrations

To verify that a set of pending changesets can be fully rolled back, use the db test command, which will migrate
forward, roll back to the original state, then migrate forward again:

java -jar hello-world.jar db test helloworld.yml

Warning: Do not run this in production, for obvious reasons.

2.4.10 Preparing A Rollback Script

To prepare a rollback script for pending changesets before they have been applied, use the db prepare-rollback
command:

java -jar hello-world.jar db prepare-rollback helloworld.yml

This will output a DDL script to stdout capable of rolling back all unapplied changesets.

2.4.11 Generating Documentation

To generate HTML documentation on the current status of the database, use the db generate-docs command:

java -jar hello-world.jar db generate-docs helloworld.yml ~/db-docs/

2.4.12 Dropping All Objects

To drop all objects in the database, use the db drop-all command:

java -jar hello-world.jar db drop-all --confirm-delete-everything helloworld.yml

Warning: You need to specify the --confirm-delete-everything flag because this command deletes
everything in the database. Be sure you want to do that first.

2.4.13 Fast-Forwarding Through A Changeset

To mark a pending changeset as applied (e.g., after having backfilled your migrations.xml with db dump), use
the db fast-forward command:

java -jar hello-world.jar db fast-forward helloworld.yml

This will mark the next pending changeset as applied. You can also use the --all flag to mark all pending changesets
as applied.

48 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

2.4.14 Support For Adding Multiple Migration Bundles

Assuming migrations need to be done for two different databases, you would need to have two different data source
factories:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
private DataSourceFactory database1 = new DataSourceFactory();

@Valid
@NotNull
private DataSourceFactory database2 = new DataSourceFactory();

@JsonProperty("database1")
public DataSourceFactory getDb1DataSourceFactory() {

return database1;
}

@JsonProperty("database2")
public DataSourceFactory getDb2DataSourceFactory() {

return database2;
}

}

Now multiple migration bundles can be added with unique names like so:

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {

bootstrap.addBundle(new MigrationsBundle<ExampleConfiguration>() {
@Override
public DataSourceFactory getDataSourceFactory(ExampleConfiguration

→˓configuration) {
return configuration.getDb1DataSourceFactory();

}

@Override
public String name() {

return "db1";
}

});

bootstrap.addBundle(new MigrationsBundle<ExampleConfiguration>() {
@Override
public DataSourceFactory getDataSourceFactory(ExampleConfiguration

→˓configuration) {
return configuration.getDb2DataSourceFactory();

}

@Override
public String name() {

return "db2";
}

});
}

To migrate your schema:

2.4. Dropwizard Migrations 49

Dropwizard Documentation, Release @project.version@

java -jar hello-world.jar db1 migrate helloworld.yml

and

java -jar hello-world.jar db2 migrate helloworld.yml

Note: Whenever a name is added to a migration bundle, it becomes the command that needs to be run at the command
line. eg: To check the state of your database, use the status command:

java -jar hello-world.jar db1 status helloworld.yml

or

java -jar hello-world.jar db2 status helloworld.yml

By default the migration bundle uses the “db” command. By overriding you can customize it to provide any name you
want and have multiple migration bundles. Wherever the “db” command was being used, this custom name can be
used.

There will also be a need to provide different change log migration files as well. This can be done as

java -jar hello-world.jar db1 migrate helloworld.yml --migrations <path_to_db1_
→˓migrations.xml>

java -jar hello-world.jar db2 migrate helloworld.yml --migrations <path_to_db2_
→˓migrations.xml>

2.4.15 More Information

If you are using databases supporting multiple schemas like PostgreSQL, Oracle, or H2, you can use the optional
--catalog and --schema arguments to specify the database catalog and schema used for the Liquibase com-
mands.

For more information on available commands, either use the db --help command, or for more detailed help on a
specific command, use db <cmd> --help.

2.5 Dropwizard Hibernate

The dropwizard-hibernate module provides you with managed access to Hibernate, a powerful,
industry-standard object-relation mapper (ORM).

2.5.1 Configuration

To create a managed, instrumented SessionFactory instance, your configuration class needs a
DataSourceFactory instance:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
private DataSourceFactory database = new DataSourceFactory();

(continues on next page)

50 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

(continued from previous page)

@JsonProperty("database")
public DataSourceFactory getDataSourceFactory() {

return database;
}

}

Then, add a HibernateBundle instance to your application class, specifying your entity classes and how to get a
DataSourceFactory from your configuration subclass:

private final HibernateBundle<ExampleConfiguration> hibernate = new HibernateBundle
→˓<ExampleConfiguration>(Person.class) {

@Override
public DataSourceFactory getDataSourceFactory(ExampleConfiguration configuration)

→˓{
return configuration.getDataSourceFactory();

}
};

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {

bootstrap.addBundle(hibernate);
}

@Override
public void run(ExampleConfiguration config, Environment environment) {

final UserDAO dao = new UserDAO(hibernate.getSessionFactory());
environment.jersey().register(new UserResource(dao));

}

This will create a new managed connection pool to the database, a health check for connectivity to the database, and
a new SessionFactory instance for you to use in your DAO classes.

Your application’s configuration file will then look like this:

database:
the name of your JDBC driver
driverClass: org.postgresql.Driver

the username
user: pg-user

the password
password: iAMs00perSecrEET

the JDBC URL
url: jdbc:postgresql://db.example.com/db-prod

any properties specific to your JDBC driver:
properties:
charSet: UTF-8
hibernate.dialect: org.hibernate.dialect.PostgreSQLDialect

the maximum amount of time to wait on an empty pool before throwing an exception
maxWaitForConnection: 1s

the SQL query to run when validating a connection's liveness
(continues on next page)

2.5. Dropwizard Hibernate 51

Dropwizard Documentation, Release @project.version@

(continued from previous page)

validationQuery: "/* MyApplication Health Check */ SELECT 1"

the minimum number of connections to keep open
minSize: 8

the maximum number of connections to keep open
maxSize: 32

whether or not idle connections should be validated
checkConnectionWhileIdle: false

2.5.2 Usage

Data Access Objects

Dropwizard comes with AbstractDAO, a minimal template for entity-specific DAO classes. It contains type-safe
wrappers for most of SessionFactory’s common operations:

public class PersonDAO extends AbstractDAO<Person> {
public PersonDAO(SessionFactory factory) {

super(factory);
}

public Person findById(Long id) {
return get(id);

}

public long create(Person person) {
return persist(person).getId();

}

public List<Person> findAll() {
return list(namedQuery("com.example.helloworld.core.Person.findAll"));

}
}

Transactional Resource Methods

Dropwizard uses a declarative method of scoping transactional boundaries. Not all resource methods actually require
database access, so the @UnitOfWork annotation is provided:

@GET
@Path("/{id}")
@Timed
@UnitOfWork
public Person findPerson(@PathParam("id") LongParam id) {

return dao.findById(id.get());
}

This will automatically open a session, begin a transaction, call findById, commit the transaction, and finally close
the session. If an exception is thrown, the transaction is rolled back.

Important: The Hibernate session is closed before your resource method’s return value (e.g., the Person from the

52 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

database), which means your resource method (or DAO) is responsible for initializing all lazily-loaded collections,
etc., before returning. Otherwise, you’ll get a LazyInitializationException thrown in your template (or
null values produced by Jackson).

Transactional Resource Methods Outside Jersey Resources

Currently creating transactions with the @UnitOfWork annotation works out-of-box only for resources managed by
Jersey. If you want to use it outside Jersey resources, e.g. in authenticators, you should instantiate your class with
UnitOfWorkAwareProxyFactory.

SessionDao dao = new SessionDao(hibernateBundle.getSessionFactory());
ExampleAuthenticator exampleAuthenticator = new
→˓UnitOfWorkAwareProxyFactory(hibernateBundle)

.create(ExampleAuthenticator.class, SessionDao.class, dao);

It will create a proxy of your class, which will open a Hibernate session with a transaction around methods with the
@UnitOfWork annotation.

2.5.3 Prepended Comments

Dropwizard automatically configures Hibernate to prepend a comment describing the context of all queries:

/* load com.example.helloworld.core.Person */
select

person0_.id as id0_0_,
person0_.fullName as fullName0_0_,
person0_.jobTitle as jobTitle0_0_

from people person0_
where person0_.id=?

This will allow you to quickly determine the origin of any slow or misbehaving queries.

2.6 Dropwizard Authentication

The dropwizard-auth client provides authentication using either HTTP Basic Authentication or
OAuth2 bearer tokens.

2.6.1 Authenticators

An authenticator is a strategy class which, given a set of client-provided credentials, possibly returns a principal (i.e.,
the person or entity on behalf of whom your service will do something).

Authenticators implement the Authenticator<C, P extends Principal> interface, which has a single
method:

public class ExampleAuthenticator implements Authenticator<BasicCredentials, User> {
@Override
public Optional<User> authenticate(BasicCredentials credentials) throws

→˓AuthenticationException {
if ("secret".equals(credentials.getPassword())) {

return Optional.of(new User(credentials.getUsername()));

(continues on next page)

2.6. Dropwizard Authentication 53

Dropwizard Documentation, Release @project.version@

(continued from previous page)

}
return Optional.absent();

}
}

This authenticator takes basic auth credentials and if the client-provided password is secret, authenticates the client
as a User with the client-provided username.

If the password doesn’t match, an absent Optional is returned instead, indicating that the credentials are invalid.

Warning: It’s important for authentication services not to provide too much information in their errors. The
fact that a username or email has an account may be meaningful to an attacker, so the Authenticator inter-
face doesn’t allow you to distinguish between a bad username and a bad password. You should only throw an
AuthenticationException if the authenticator is unable to check the credentials (e.g., your database is
down).

Caching

Because the backing data stores for authenticators may not handle high throughput (an RDBMS or LDAP server, for
example), Dropwizard provides a decorator class which provides caching:

SimpleAuthenticator simpleAuthenticator = new SimpleAuthenticator();
CachingAuthenticator<BasicCredentials, User> cachingAuthenticator = new
→˓CachingAuthenticator<>(

metricRegistry, simpleAuthenticator,
config.getAuthenticationCachePolicy());

Dropwizard can parse Guava’s CacheBuilderSpec from the configuration policy, allowing your configuration file
to look like this:

authenticationCachePolicy: maximumSize=10000, expireAfterAccess=10m

This caches up to 10,000 principals with an LRU policy, evicting stale entries after 10 minutes.

2.6.2 Authorizer

An authorizer is a strategy class which, given a principal and a role, decides if access is granted to the principal.

The authorizer implements the Authorizer<P extends Principal> interface, which has a single method:

public class ExampleAuthorizer implements Authorizer<User> {
@Override
public boolean authorize(User user, String role) {

return user.getName().equals("good-guy") && role.equals("ADMIN");
}

}

2.6.3 Basic Authentication

The AuthDynamicFeature with the BasicCredentialAuthFilter and
RolesAllowedDynamicFeature enables HTTP Basic authentication and authorization; requires an

54 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

authenticator which takes instances of BasicCredentials. If you don’t use authorization, then
RolesAllowedDynamicFeature is not required.

@Override
public void run(ExampleConfiguration configuration,

Environment environment) {
environment.jersey().register(new AuthDynamicFeature(

new BasicCredentialAuthFilter.Builder<User>()
.setAuthenticator(new ExampleAuthenticator())
.setAuthorizer(new ExampleAuthorizer())
.setRealm("SUPER SECRET STUFF")
.buildAuthFilter()));

environment.jersey().register(RolesAllowedDynamicFeature.class);
//If you want to use @Auth to inject a custom Principal type into your resource
environment.jersey().register(new AuthValueFactoryProvider.Binder<>(User.class));

}

2.6.4 OAuth2

The AuthDynamicFeature with OAuthCredentialAuthFilter and
RolesAllowedDynamicFeature enables OAuth2 bearer-token authentication and authorization;
requires an authenticator which takes instances of String. If you don’t use authorization, then
RolesAllowedDynamicFeature is not required.

@Override
public void run(ExampleConfiguration configuration,

Environment environment) {
environment.jersey().register(new AuthDynamicFeature(

new OAuthCredentialAuthFilter.Builder<User>()
.setAuthenticator(new ExampleOAuthAuthenticator())
.setAuthorizer(new ExampleAuthorizer())
.setPrefix("Bearer")
.buildAuthFilter()));

environment.jersey().register(RolesAllowedDynamicFeature.class);
//If you want to use @Auth to inject a custom Principal type into your resource
environment.jersey().register(new AuthValueFactoryProvider.Binder<>(User.class));

}

2.6.5 Chained Factories

The ChainedAuthFilter enables usage of various authentication factories at the same time.

@Override
public void run(ExampleConfiguration configuration,

Environment environment) {
AuthFilter basicCredentialAuthFilter = new BasicCredentialAuthFilter.Builder<>()

.setAuthenticator(new ExampleBasicAuthenticator())

.setAuthorizer(new ExampleAuthorizer())

.setPrefix("Basic")

.buildAuthFilter();

AuthFilter oauthCredentialAuthFilter = new OAuthCredentialAuthFilter.Builder<>()
.setAuthenticator(new ExampleOAuthAuthenticator())
.setAuthorizer(new ExampleAuthorizer())

(continues on next page)

2.6. Dropwizard Authentication 55

Dropwizard Documentation, Release @project.version@

(continued from previous page)

.setPrefix("Bearer")

.buildAuthFilter();

List<AuthFilter> filters = Lists.newArrayList(basicCredentialAuthFilter,
→˓oauthCredentialAuthFilter);

environment.jersey().register(new AuthDynamicFeature(new
→˓ChainedAuthFilter(filters)));

environment.jersey().register(RolesAllowedDynamicFeature.class);
//If you want to use @Auth to inject a custom Principal type into your resource
environment.jersey().register(new AuthValueFactoryProvider.Binder<>(User.class));

}

For this to work properly, all chained factories must produce the same type of principal, here User.

2.6.6 Protecting Resources

There are two ways to protect a resource. You can mark your resource method with one of the following annotations:

• @PermitAll. All authenticated users will have access to the method.

• @RolesAllowed. Access will be granted to the users with the specified roles.

• @DenyAll. No access will be granted to anyone.

Note: You can use @RolesAllowed,‘‘@PermitAll‘‘ on the class level. Method annotations take precedence over
the class ones.

Alternatively, you can annotate the parameter representing your principal with @Auth. Note you must register a jersey
provider to make this work.

environment.jersey().register(new AuthValueFactoryProvider.Binder<>(User.class));

@RolesAllowed("ADMIN")
@GET
public SecretPlan getSecretPlan(@Auth User user) {

return dao.findPlanForUser(user);
}

You can also access the Principal by adding a parameter to your method @Context SecurityContext
context. Note this will not automatically register the servlet filter which performs authentication. You will still
need to add one of @PermitAll, @RolesAllowed, or @DenyAll. This is not the case with @Auth. When that
is present, the auth filter is automatically registered to facilitate users upgrading from older versions of Dropwizard

@RolesAllowed("ADMIN")
@GET
public SecretPlan getSecretPlan(@Context SecurityContext context) {

User userPrincipal = (User) context.getUserPrincipal();
return dao.findPlanForUser(user);

}

If there are no provided credentials for the request, or if the credentials are invalid, the provider will return a scheme-
appropriate 401 Unauthorized response without calling your resource method.

If you have a resource which is optionally protected (e.g., you want to display a logged-in user’s name but not require
login), you need to implement a custom filter which injects a security context containing the principal if it exists,

56 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

without performing authentication.

2.6.7 Testing Protected Resources

Add this dependency into your pom.xml file:

<dependencies>
<dependency>
<groupId>io.dropwizard</groupId>
<artifactId>dropwizard-testing</artifactId>
<version>${dropwizard.version}</version>

</dependency>
<dependency>
<groupId>org.glassfish.jersey.test-framework.providers</groupId>
<artifactId>jersey-test-framework-provider-grizzly2</artifactId>
<version>${jersey.version}</version>
<exclusions>

<exclusion>
<groupId>javax.servlet</groupId>
<artifactId>javax.servlet-api</artifactId>

</exclusion>
<exclusion>

<groupId>junit</groupId>
<artifactId>junit</artifactId>

</exclusion>
</exclusions>

</dependency>
</dependencies>

When you build your ResourceTestRule, add the GrizzlyWebTestContainerFactory line.

@Rule
public ResourceTestRule rule = ResourceTestRule

.builder()

.setTestContainerFactory(new GrizzlyWebTestContainerFactory())

.addProvider(new AuthDynamicFeature(new OAuthCredentialAuthFilter.Builder
→˓<User>()

.setAuthenticator(new MyOAuthAuthenticator())

.setAuthorizer(new MyAuthorizer())

.setRealm("SUPER SECRET STUFF")

.setPrefix("Bearer")

.buildAuthFilter()))
.addProvider(RolesAllowedDynamicFeature.class)
.addProvider(new AuthValueFactoryProvider.Binder<>(User.class))
.addResource(new ProtectedResource())
.build();

In this example, we are testing the oauth authentication, so we need to set the header manually. Note the use of
resources.getJerseyTest() to make the test work

@Test
public void testProtected() throws Exception {

final Response response = rule.getJerseyTest().target("/protected")
.request(MediaType.APPLICATION_JSON_TYPE)
.header("Authorization", "Bearer TOKEN")
.get();

(continues on next page)

2.6. Dropwizard Authentication 57

Dropwizard Documentation, Release @project.version@

(continued from previous page)

assertThat(response.getStatus()).isEqualTo(200);
}

2.6.8 Multiple Principals and Authenticators

In some cases you may want to use different authenticators/authentication schemes for different resources. For ex-
ample you may want Basic authentication for one resource and OAuth for another resource, at the same time using a
different Principal for each authentication scheme.

For this use case, there is the PolymorphicAuthDynamicFeature and the
PolymorphicAuthValueFactoryProvider. With these two components, we can use different combi-
nations of authentication schemes/authenticators/authorizers/principals. To use this feature, we need to do a few
things:

• Register the PolymorphicAuthDynamicFeature with a map that maps principal types to authentication
filters.

• Register the PolymorphicAuthValueFactoryProvider with a set of principal classes that you will be
using.

• Annotate your resource method Principal parameters with @Auth.

As an example, the following code configures both OAuth and Basic authentication, using a different principal for
each.

final AuthFilter<BasicCredentials, BasicPrincipal> basicFilter
= new BasicCredentialAuthFilter.Builder<BasicPrincipal>()

.setAuthenticator(new ExampleAuthenticator())

.setRealm("SUPER SECRET STUFF")

.buildAuthFilter());
final AuthFilter<String, OAuthPrincipal> oauthFilter

= new OAuthCredentialAuthFilter.Builder<OAuthPrincipal>()
.setAuthenticator(new ExampleOAuthAuthenticator())
.setPrefix("Bearer")
.buildAuthFilter());

final PolymorphicAuthDynamicFeature feature = new PolymorphicAuthDynamicFeature<>(
ImmutableMap.of(

BasicPrincipal.class, basicFilter,
OAuthPrincipal.class, oauthFilter));

final AbstractBinder binder = new PolymorphicAuthValueFactoryProvider.Binder<>(
ImmutableSet.of(BasicPrincipal.class, OAuthPrincipal.class));

environment.jersey().register(feature);
environment.jersey().register(binder);

Now we are able to do something like the following

@GET
public Response basicAuthResource(@Auth BasicPrincipal principal) {}

@GET
public Response oauthResource(@Auth OAuthPrincipal principal) {}

The first resource method will use Basic authentication while the second one will use OAuth.

58 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

Note that with the above example, only authentication is configured. If you also want authorization, the following
steps will need to be taken.

• Register the RolesAllowedDynamicFeature with the application.

• Make sure you add Authorizers when you build your AuthFilters.

• Annotate the resource method with the authorization annotation. Unlike the note earlier in this document that
says authorization annotations are allowed on classes, with this poly feature, currently that is not supported. The
annotation MUST go on the resource method

So continuing with the previous example you should add the following configurations

... = new BasicCredentialAuthFilter.Builder<BasicPrincipal>()
.setAuthorizer(new ExampleAuthorizer()).. // set authorizer

... = new OAuthCredentialAuthFilter.Builder<OAuthPrincipal>()
.setAuthorizer(new ExampleAuthorizer()).. // set authorizer

environment.jersey().register(RolesAllowedDynamicFeature.class);

Now we can do

@GET
@RolesAllowed({ "ADMIN" })
public Response baseAuthResource(@Auth BasicPrincipal principal) {}

@GET
@RolesAllowed({ "ADMIN" })
public Response oauthResource(@Auth OAuthPrincipal principal) {}

Note: The polymorphic auth feature SHOULD NOT be used with any other AuthDynamicFeature. Doing so
may have undesired effects.

2.7 Dropwizard Forms

The dropwizard-forms module provides you with a support for multi-part forms via Jersey.

2.7.1 Adding The Bundle

Then, in your application’s initialize method, add a new MultiPartBundle subclass:

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {

bootstrap.addBundle(new MultiPartBundle());
}

2.7.2 More Information

For additional and more detailed documentation about the Jersey multi-part support, please refer to the documentation
in the Jersey User Guide and Javadoc.

2.7. Dropwizard Forms 59

https://jersey.java.net/documentation/latest/media.html#multipart
https://jersey.java.net/apidocs/latest/jersey/org/glassfish/jersey/media/multipart/package-summary.html

Dropwizard Documentation, Release @project.version@

2.8 Dropwizard Validation

Dropwizard comes with a host of validation tools out of the box to allow endpoints to return mean-
ingful error messages when constraints are violated. Hibernate Validator is packaged with Dropwiz-
ard, so what can be done in Hibernate Validator, can be done with Dropwizard.

2.8.1 Validations

Almost anything can be validated on resource endpoints. To give a quick example, the following endpoint doesn’t
allow a null or empty name query parameter.

@GET
public String find(@QueryParam("name") @NotEmpty String arg) {

// ...
}

If a client sends an empty or nonexistent name query param, Dropwizard will respond with a 400 Bad Request
code with the error: query param name may not be empty.

Additionally, annotations such as HeaderParam, CookieParam, FormParam, etc, can be constrained with vio-
lations giving descriptive errors and 400 status codes.

Constraining Entities

If we’re accepting client-provided Person, we probably want to ensure that the name field of the object isn’t null
or blank in the request. We can do this as follows:

public class Person {

@NotEmpty // ensure that name isn't null or blank
private final String name;

@JsonCreator
public Person(@JsonProperty("name") String name) {

this.name = name;
}

@JsonProperty("name")
public String getName() {

return name;
}

}

Then, in our resource class, we can add the @Valid annotation to the Person annotation:

@PUT
public Person replace(@NotNull @Valid Person person) {

// ...
}

If the name field is missing, Dropwizard will return a 422 Unprocessable Entity response detailing the vali-
dation errors: name may not be empty

Note: You don’t need @Valid when the type you are validating can be validated directly (int, String,
Integer). If a class has fields that need validating, then instances of the class must be marked @Valid. For

60 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

more information, see the Hibernate Validator documentation on Object graphs and Cascaded validation.

Since our entity is also annotated with @NotNull, Dropwizard will also guard against null input with a response
stating that the body must not be null.

Optional<T> Constraints

If an entity, field, or parameter is not required, it can be wrapped in an Optional<T>, but the inner value can still
be constrained with the @UnwrapValidatedValue annotation. If the Optional is absent, then the constraints
are not applied.

Note: Be careful when using constraints with *Param annotations on Optional<String> parameters as there
is a subtle, but important distinction between null and empty. If a client requests bar?q=, q will evaluate to
Optional.of(""). If you want q to evaluate to Optional.absent() in this situation, change the type to
NonEmptyStringParam

Note: Param types such as IntParam and NonEmptyStringParam can also be constrained.

There is a caveat regarding @UnwrapValidatedValue and *Param types, as there still are some cumbersome
situations when constraints need to be applied to the container and the value.

@POST
// The @NotNull is supposed to mean that the parameter is required but the Max(3) is
→˓supposed to
// apply to the contained integer. Currently, this code will fail saying that Max can
→˓'t
// be applied on an IntParam
public List<Person> createNum(@QueryParam("num") @UnwrapValidatedValue(false)

@NotNull @Max(3) IntParam num) {
// ...

}

@GET
// Similarly, the underlying validation framework can't unwrap nested types (an
→˓integer wrapped
// in an IntParam wrapped in an Optional), regardless if the @UnwrapValidatedValue is
→˓used
public Person retrieve(@QueryParam("num") @Max(3) Optional<IntParam> num) {

// ...
}

To work around these limitations, if the parameter is required check for it in the endpoint and throw an exception, else
use @DefaultValue or move the Optional into the endpoint.

@POST
// Workaround to handle required int params and validations
public List<Person> createNum(@QueryParam("num") @Max(3) IntParam num) {

if (num == null) {
throw new WebApplicationException("query param num must not be null", 400);

}
// ...

}

(continues on next page)

2.8. Dropwizard Validation 61

http://docs.jboss.org/hibernate/validator/5.2/reference/en-US/html/chapter-bean-constraints.html#section-object-graph-validation
http://docs.jboss.org/hibernate/validator/5.2/reference/en-US/html/chapter-method-constraints.html#_cascaded_validation

Dropwizard Documentation, Release @project.version@

(continued from previous page)

@GET
// Workaround to handle optional int params and validations with DefaultValue
public Person retrieve(@QueryParam("num") @DefaultValue("0") @Max(3) IntParam num) {

// ...
}

@GET
// Workaround to handle optional int params and validations with Optional
public Person retrieve2(@QueryParam("num") @Max(3) IntParam num) {

Optional.fromNullable(num);
// ...

}

Return Value Validations

It’s reasonable to want to make guarantees to clients regarding the server response. For example, you may want to
assert that no response will ever be null, and if an endpoint creates a Person that the person is valid.

@POST
@NotNull
@Valid
public Person create() {

return new Person(null);
}

In this instance, instead of returning someone with a null name, Dropwizard will return an HTTP 500 Internal
Server Error with the error server response name may not be empty, so the client knows the
server failed through no fault of their own.

Analogous to an empty request body, an empty entity annotated with @NotNull will return server response
may not be null

2.8.2 Limitations

Jersey allows for BeanParam to have setters with *Param annotations. While nice for simple transformations it
does obstruct validation, so clients won’t receive as instructive of error messages. The following example shows the
behavior:

@Path("/root")
@Produces(MediaType.APPLICATION_JSON)
public class Resource {

@GET
@Path("params")
public String getBean(@Valid @BeanParam MyBeanParams params) {

return params.getField();
}

public static class MyBeanParams {
@NotEmpty
private String field;

public String getField() {
(continues on next page)

62 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

(continued from previous page)

return field;
}

@QueryParam("foo")
public void setField(String field) {

this.field = Strings.nullToEmpty(field).trim();
}

}
}

A client submitting the query parameter foo as blank will receive the following error message:

{"errors":["getBean.arg0.field may not be empty"]}

Workarounds include:

• Name BeanParam fields the same as the *Param annotation values

• Supply validation message on annotation: @NotEmpty(message = "query param foo must not
be empty")

• Perform transformations and validations on *Param inside endpoint

The same kind of limitation applies for Configuration objects:

public class MyConfiguration extends Configuration {
@NotNull
@JsonProperty("foo")
private String baz;

}

Even though the property’s name is foo, the error when property is null will be:

* baz may not be null

2.8.3 Annotations

In addition to the annotations defined in Hibernate Validator, Dropwizard contains another set of annotations, which
are briefly shown below.

public class Person {
@NotEmpty
private final String name;

@NotEmpty
@OneOf(value = {"m", "f"}, ignoreCase = true, ignoreWhitespace = true)
// @OneOf forces a value to value within certain values.
private final String gender;

@Max(10)
@Min(0)
// The integer contained, if present, can attain a min value of 0 and a max of 10.
private final Optional<Integer> animals;

@JsonCreator
public Person(@JsonProperty("name") String name) {

(continues on next page)

2.8. Dropwizard Validation 63

http://docs.jboss.org/hibernate/validator/5.2/reference/en-US/html/chapter-bean-constraints.html#section-builtin-constraints

Dropwizard Documentation, Release @project.version@

(continued from previous page)

this.name = name;
}

@JsonProperty("name")
public String getName() {

return name;
}

// Method that must return true for the object to be valid
@ValidationMethod(message="name may not be Coda")
@JsonIgnore
public boolean isNotCoda() {

return !"Coda".equals(name);
}

}

The reason why Dropwizard defines @ValidationMethod is that more complex validations (for example, cross-
field comparisons) are often hard to do using declarative annotations. Adding @ValidationMethod to any
boolean-returning method which begins with is is a short and simple workaround:

Note: Due to the rather daft JavaBeans conventions, when using @ValidationMethod, the method must begin
with is (e.g., #isValidPortRange(). This is a limitation of Hibernate Validator, not Dropwizard.

Validating Grouped Constraints with @Validated

The @Validated annotation allows for validation groups to be specifically set, instead of the default group. This is
useful when different endpoints share the same entity but may have different requirements.

Going back to our favorite Person class. Let’s say we initially coded it such that name has to be non-empty, but
realized that business requirements needs the max length to be no more than 5. Instead of blowing away our current
version of our API and creating angry clients, we can accept both versions of the API but at different endpoints.

public interface Version1Checks { }

public interface Version2Checks { }

public class Person {
@NotEmpty(groups = Version1Checks.class)
@Length(max = 5, groups = Version2Checks.class)
private String name;

@JsonCreator
public Person(@JsonProperty("name") String name) {

this.name = name;
}

@JsonProperty
public String getName() {

return name;
}

}

@Path("/person")
(continues on next page)

64 Chapter 2. User Manual

https://docs.jboss.org/hibernate/validator/5.2/reference/en-US/html/chapter-groups.html

Dropwizard Documentation, Release @project.version@

(continued from previous page)

@Produces(MediaType.APPLICATION_JSON)
public class PersonResource {

@POST
@Path("/v1")
public void createPersonV1(@Valid @Validated(Version1Checks.class) Person person)

→˓{
}

@POST
@Path("/v2")
public void createPersonV2(@Valid @Validated({Version1Checks.class,

→˓Version2Checks.class}) Person person) {
}

}

Now, when clients hit /person/v1 the Person entity will be checked by all the constraints that are a part of the
Version1Checks group. If /person/v2 is hit, then all the validations are performed.

Note: Since interfaces can inherit other interfaces, Version2Checks can extend Version1Checks and wher-
ever @Validated(Version2Checks.class) is used, version 1 constraints are checked too.

2.8.4 Testing

It is critical to test the constraints so that you can ensure the assumptions about the data hold and see what kinds of
error messages clients will receive for bad input. The recommended way for testing annotations is through Testing
Resources, as Dropwizard does a bit of magic behind the scenes when a constraint violation occurs to set the response’s
status code and ensure that the error messages are user friendly.

@Test
public void personNeedsAName() {

// Tests what happens when a person with a null name is sent to
// the endpoint.
final Response post = resources.client()

.target("/person/v1").request()

.post(Entity.json(new Person(null)));

// Clients will receive a 422 on bad request entity
assertThat(post.getStatus()).isEqualTo(422);

// Check to make sure that errors are correct and human readable
ValidationErrorMessage msg = post.readEntity(ValidationErrorMessage.class);
assertThat(msg.getErrors())

.containsOnly("name may not be empty");
}

2.8.5 Extending

While Dropwizard provides good defaults for error messages, one size may not fit all and so there are a series of
extension points. To register your own ExceptionMapper<JerseyViolationException> you’ll need to
first set registerDefaultExceptionMappers to false in the configuration file or in code before registering
your exception mapper with jersey. Then, optionally, register other default exception mappers:

2.8. Dropwizard Validation 65

Dropwizard Documentation, Release @project.version@

• LoggingExceptionMapper<Throwable>

• JsonProcessingExceptionMapper

• EarlyEofExceptionMapper

If you need to validate entities outside of resource endpoints, the validator can be accessed in the Environment
when the application is first ran.

Validator validator = environment.getValidator();
Set<ConstraintViolation> errors = validator.validate(/* instance of class */)

The method used to determine what status code to return based on violations is ConstraintViolations.
determineStatus

The method used to determine the human friendly error message due to a constraint violation is
ConstraintMessage.getMessage.

2.9 Dropwizard Views

The dropwizard-views-mustache & dropwizard-views-freemarker modules provide you with
simple, fast HTML views using either FreeMarker or Mustache.

To enable views for your Application, add the ViewBundle in the initialize method of your Application class:

public void initialize(Bootstrap<MyConfiguration> bootstrap) {
bootstrap.addBundle(new ViewBundle<MyConfiguration>());

}

You can pass configuration through to view renderers by overriding getViewConfiguration:

public void initialize(Bootstrap<MyConfiguration> bootstrap) {
bootstrap.addBundle(new ViewBundle<MyConfiguration>() {

@Override
public Map<String, Map<String, String>> getViewConfiguration(MyConfiguration

→˓config) {
return config.getViewRendererConfiguration();

}
});

}

The returned map should have, for each extension (such as .ftl), a Map<String, String> describing how to
configure the renderer. Specific keys and their meanings can be found in the FreeMarker and Mustache documentation:

views:
.ftl:
strict_syntax: yes

Then, in your resource method, add a View class:

public class PersonView extends View {
private final Person person;

public PersonView(Person person) {
super("person.ftl");
this.person = person;

(continues on next page)

66 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

(continued from previous page)

}

public Person getPerson() {
return person;

}
}

person.ftl is the path of the template relative to the class name. If this class was com.example.service.
PersonView, Dropwizard would then look for the file src/main/resources/com/example/service/
person.ftl.

If your template ends with .ftl, it’ll be interpreted as a FreeMarker template. If it ends with .mustache, it’ll be
interpreted as a Mustache template.

Tip: Dropwizard Freemarker Views also support localized template files. It picks up the client’s locale from
their Accept-Language, so you can add a French template in person_fr.ftl or a Canadian template in
person_en_CA.ftl.

Your template file might look something like this:

<#-- @ftlvariable name="" type="com.example.views.PersonView" -->
<html>

<body>
<!-- calls getPerson().getName() and sanitizes it -->
<h1>Hello, ${person.name?html}!</h1>

</body>
</html>

The @ftlvariable lets FreeMarker (and any FreeMarker IDE plugins you may be using) know that the root
object is a com.example.views.PersonView instance. If you attempt to call a property which doesn’t exist on
PersonView – getConnectionPool(), for example – it will flag that line in your IDE.

Once you have your view and template, you can simply return an instance of your View subclass:

@Path("/people/{id}")
@Produces(MediaType.TEXT_HTML)
public class PersonResource {

private final PersonDAO dao;

public PersonResource(PersonDAO dao) {
this.dao = dao;

}

@GET
public PersonView getPerson(@PathParam("id") String id) {

return new PersonView(dao.find(id));
}

}

Tip: Jackson can also serialize your views, allowing you to serve both text/html and application/json
with a single representation class.

For more information on how to use FreeMarker, see the FreeMarker documentation.

2.9. Dropwizard Views 67

http://FreeMarker.sourceforge.net/
http://FreeMarker.sourceforge.net/
http://FreeMarker.sourceforge.net/

Dropwizard Documentation, Release @project.version@

For more information on how to use Mustache, see the Mustache and Mustache.java documentation.

2.9.1 Template Errors

If there is an error with the template (eg. the template file is not found or there is a compilation error with the template),
the user will receive a 500 Internal Sever Error with a generic HTML message. The exact error will logged
under error mode.

2.10 Dropwizard & Scala

The dropwizard-scala module is now maintained and documented elsewhere.

2.11 Testing Dropwizard

The dropwizard-testing module provides you with some handy classes for testing your repre-
sentation classes and resource classes. It also provides a JUnit rule for full-stack testing of your
entire app.

2.11.1 Testing Representations

While Jackson’s JSON support is powerful and fairly easy-to-use, you shouldn’t just rely on eyeballing your represen-
tation classes to ensure you’re producing the API you think you are. By using the helper methods in FixtureHelpers,
you can add unit tests for serializing and deserializing your representation classes to and from JSON.

Let’s assume we have a Person class which your API uses as both a request entity (e.g., when writing via a PUT
request) and a response entity (e.g., when reading via a GET request):

public class Person {
private String name;
private String email;

private Person() {
// Jackson deserialization

}

public Person(String name, String email) {
this.name = name;
this.email = email;

}

@JsonProperty
public String getName() {

return name;
}

@JsonProperty
public void setName(String name) {

this.name = name;
}

(continues on next page)

68 Chapter 2. User Manual

http://mustache.github.com/mustache.5.html
https://github.com/spullara/mustache.java

Dropwizard Documentation, Release @project.version@

(continued from previous page)

@JsonProperty
public String getEmail() {

return email;
}

@JsonProperty
public void setEmail(String email) {

this.email = email;
}

// hashCode
// equals
// toString etc.

}

Fixtures

First, write out the exact JSON representation of a Person in the src/test/resources/fixtures directory
of your Dropwizard project as person.json:

{
"name": "Luther Blissett",
"email": "lb@example.com"

}

Testing Serialization

Next, write a test for serializing a Person instance to JSON:

import static io.dropwizard.testing.FixtureHelpers.*;
import static org.assertj.core.api.Assertions.assertThat;
import io.dropwizard.jackson.Jackson;
import org.junit.Test;
import com.fasterxml.jackson.databind.ObjectMapper;

public class PersonTest {

private static final ObjectMapper MAPPER = Jackson.newObjectMapper();

@Test
public void serializesToJSON() throws Exception {

final Person person = new Person("Luther Blissett", "lb@example.com");

final String expected = MAPPER.writeValueAsString(
MAPPER.readValue(fixture("fixtures/person.json"), Person.class));

assertThat(MAPPER.writeValueAsString(person)).isEqualTo(expected);
}

}

This test uses AssertJ assertions and JUnit to test that when a Person instance is serialized via Jackson it matches the
JSON in the fixture file. (The comparison is done on a normalized JSON string representation, so formatting doesn’t
affect the results.)

2.11. Testing Dropwizard 69

http://assertj.org/assertj-core-conditions.html
http://www.junit.org/

Dropwizard Documentation, Release @project.version@

Testing Deserialization

Next, write a test for deserializing a Person instance from JSON:

import static io.dropwizard.testing.FixtureHelpers.*;
import static org.assertj.core.api.Assertions.assertThat;
import io.dropwizard.jackson.Jackson;
import org.junit.Test;
import com.fasterxml.jackson.databind.ObjectMapper;

public class PersonTest {

private static final ObjectMapper MAPPER = Jackson.newObjectMapper();

@Test
public void deserializesFromJSON() throws Exception {

final Person person = new Person("Luther Blissett", "lb@example.com");
assertThat(MAPPER.readValue(fixture("fixtures/person.json"), Person.class))

.isEqualTo(person);
}

}

This test uses AssertJ assertions and JUnit to test that when a Person instance is deserialized via Jackson from the
specified JSON fixture it matches the given object.

2.11.2 Testing Resources

While many resource classes can be tested just by calling the methods on the class in a test, some resources lend them-
selves to a more full-stack approach. For these, use ResourceTestRule, which loads a given resource instance in
an in-memory Jersey server:

import static org.assertj.core.api.Assertions.assertThat;
import static org.mockito.Mockito.*;

public class PersonResourceTest {

private static final PeopleStore dao = mock(PeopleStore.class);

@ClassRule
public static final ResourceTestRule resources = ResourceTestRule.builder()

.addResource(new PersonResource(dao))

.build();

private final Person person = new Person("blah", "blah@example.com");

@Before
public void setup() {

when(dao.fetchPerson(eq("blah"))).thenReturn(person);
}

@After
public void tearDown(){

// we have to reset the mock after each test because of the
// @ClassRule, or use a @Rule as mentioned below.
reset(dao);

}

(continues on next page)

70 Chapter 2. User Manual

http://assertj.org/assertj-core-conditions.html
http://www.junit.org/

Dropwizard Documentation, Release @project.version@

(continued from previous page)

@Test
public void testGetPerson() {

assertThat(resources.client().target("/person/blah").request().get(Person.
→˓class))

.isEqualTo(person);
verify(dao).fetchPerson("blah");

}
}

Instantiate a ResourceTestRule using its Builder and add the various resource instances you want to test via
ResourceTestRule.Builder#addResource(Object). Use a @ClassRule annotation to have the rule
wrap the entire test class or the @Rule annotation to have the rule wrap each test individually (make sure to remove
static final modifier from resources).

In your tests, use #client(), which returns a Jersey Client instance to talk to and test your instances.

This doesn’t require opening a port, but ResourceTestRule tests will perform all the serialization, deserialization,
and validation that happens inside of the HTTP process.

This also doesn’t require a full integration test. In the above example, a mocked PeopleStore is passed to the
PersonResource instance to isolate it from the database. Not only does this make the test much faster, but it
allows your resource unit tests to test error conditions and edge cases much more easily.

Hint: You can trust PeopleStore works because you’ve got working unit tests for it, right?

Default Exception Mappers

By default, a ResourceTestRule will register all the default exception mappers (this behavior is new in
1.0). If registerDefaultExceptionMappers in the configuration yaml is planned to be set to false,
ResourceTestRule.Builder#setRegisterDefaultExceptionMappers(boolean) will also need
to be set to false. Then, all custom exception mappers will need to be registered on the builder, similarly to how
they are registered in an Application class.

Test Containers

Note that the in-memory Jersey test container does not support all features, such as the @Context injection used by
BasicAuthFactory and OAuthFactory. A different test container can be used via ResourceTestRule.
Builder#setTestContainerFactory(TestContainerFactory).

For example, if you want to use the Grizzly HTTP server (which supports @Context injections) you
need to add the dependency for the Jersey Test Framework providers to your Maven POM and set
GrizzlyWebTestContainerFactory as TestContainerFactory in your test classes.

<dependency>
<groupId>org.glassfish.jersey.test-framework.providers</groupId>
<artifactId>jersey-test-framework-provider-grizzly2</artifactId>
<version>${jersey.version}</version>
<scope>test</scope>
<exclusions>

<exclusion>
<groupId>javax.servlet</groupId>
<artifactId>javax.servlet-api</artifactId>

(continues on next page)

2.11. Testing Dropwizard 71

https://jersey.java.net/documentation/latest/test-framework.html
https://grizzly.java.net/

Dropwizard Documentation, Release @project.version@

(continued from previous page)

</exclusion>
<exclusion>

<groupId>junit</groupId>
<artifactId>junit</artifactId>

</exclusion>
</exclusions>

</dependency>

public class ResourceTestWithGrizzly {
@ClassRule
public static final ResourceTestRule RULE = ResourceTestRule.builder()

.setTestContainerFactory(new GrizzlyWebTestContainerFactory())

.addResource(new ExampleResource())

.build();

@Test
public void testResource() {

assertThat(RULE.getJerseyTest().target("/example").request()
.get(String.class))
.isEqualTo("example");

}
}

2.11.3 Testing Client Implementations

To avoid circular dependencies in your projects or to speed up test runs, you can test your HTTP client code by
writing a JAX-RS resource as test double and let the DropwizardClientRule start and stop a simple Dropwizard
application containing your test doubles.

public class CustomClientTest {
@Path("/ping")
public static class PingResource {

@GET
public String ping() {

return "pong";
}

}

@ClassRule
public static final DropwizardClientRule dropwizard = new

→˓DropwizardClientRule(new PingResource());

@Test
public void shouldPing() throws IOException {

final URL url = new URL(dropwizard.baseUri() + "/ping");
final String response = new BufferedReader(new InputStreamReader(url.

→˓openStream())).readLine();
assertEquals("pong", response);

}
}

Hint: Of course you would use your HTTP client in the @Test method and not java.net.
URL#openStream().

72 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

The DropwizardClientRule takes care of:

• Creating a simple default configuration.

• Creating a simplistic application.

• Adding a dummy health check to the application to suppress the startup warning.

• Adding your JAX-RS resources (test doubles) to the Dropwizard application.

• Choosing a free random port number (important for running tests in parallel).

• Starting the Dropwizard application containing the test doubles.

• Stopping the Dropwizard application containing the test doubles.

2.11.4 Integration Testing

It can be useful to start up your entire application and hit it with real HTTP requests during test-
ing. The dropwizard-testing module offers helper classes for your easily doing so. The optional
dropwizard-client module offers more helpers, e.g. a custom JerseyClientBuilder, which is aware of your
application’s environment.

JUnit

Adding DropwizardAppRule to your JUnit test class will start the app prior to any tests running and stop
it again when they’ve completed (roughly equivalent to having used @BeforeClass and @AfterClass).
DropwizardAppRule also exposes the app’s Configuration, Environment and the app object itself so
that these can be queried by the tests.

public class LoginAcceptanceTest {

@ClassRule
public static final DropwizardAppRule<TestConfiguration> RULE =

new DropwizardAppRule<TestConfiguration>(MyApp.class, ResourceHelpers.
→˓resourceFilePath("my-app-config.yaml"));

@Test
public void loginHandlerRedirectsAfterPost() {

Client client = new JerseyClientBuilder(RULE.getEnvironment()).build("test
→˓client");

Response response = client.target(
String.format("http://localhost:%d/login", RULE.getLocalPort()))

.request()

.post(Entity.json(loginForm()));

assertThat(response.getStatus()).isEqualTo(302);
}

}

Non-JUnit

By creating a DropwizardTestSupport instance in your test you can manually start and stop the app in your tests,
you do this by calling its before and after methods. DropwizardTestSupport also exposes the app’s
Configuration, Environment and the app object itself so that these can be queried by the tests.

2.11. Testing Dropwizard 73

Dropwizard Documentation, Release @project.version@

public class LoginAcceptanceTest {

public static final DropwizardTestSupport<TestConfiguration> SUPPORT =
new DropwizardTestSupport<TestConfiguration>(MyApp.class,

ResourceHelpers.resourceFilePath("my-app-config.yaml"),
ConfigOverride.config("server.applicationConnectors[0].port", "0") //

→˓Optional, if not using a separate testing-specific configuration file, use a
→˓randomly selected port

);

@BeforeClass
public void beforeClass() {

SUPPORT.before();
}

@AfterClass
public void afterClass() {

SUPPORT.after();
}

@Test
public void loginHandlerRedirectsAfterPost() {

Client client = new JerseyClientBuilder(SUPPORT.getEnvironment()).build("test
→˓client");

Response response = client.target(
String.format("http://localhost:%d/login", SUPPORT.getLocalPort()))

.request()

.post(Entity.json(loginForm()));

assertThat(response.getStatus()).isEqualTo(302);
}

}

2.11.5 Testing Commands

Commands can and should be tested, as it’s important to ensure arguments are interpreted correctly, and the output is
as expected.

Below is a test for a command that adds the arguments as numbers and outputs the summation to the console. The test
ensures that the result printed to the screen is correct by capturing standard out before the command is ran.

public class CommandTest {
private final PrintStream originalOut = System.out;
private final PrintStream originalErr = System.err;
private final InputStream originalIn = System.in;

private final ByteArrayOutputStream stdOut = new ByteArrayOutputStream();
private final ByteArrayOutputStream stdErr = new ByteArrayOutputStream();
private Cli cli;

@Before
public void setUp() throws Exception {

// Setup necessary mock
final JarLocation location = mock(JarLocation.class);
when(location.getVersion()).thenReturn(Optional.of("1.0.0"));

(continues on next page)

74 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

(continued from previous page)

// Add commands you want to test
final Bootstrap<MyConfiguration> bootstrap = new Bootstrap<>(new

→˓MyApplication());
bootstrap.addCommand(new MyAddCommand());

// Redirect stdout and stderr to our byte streams
System.setOut(new PrintStream(stdOut));
System.setErr(new PrintStream(stdErr));

// Build what'll run the command and interpret arguments
cli = new Cli(location, bootstrap, stdOut, stdErr);

}

@After
public void teardown() {

System.setOut(originalOut);
System.setErr(originalErr);
System.setIn(originalIn);

}

@Test
public void myAddCanAddThreeNumbersCorrectly() {

final boolean success = cli.run("add", "2", "3", "6");

SoftAssertions softly = new SoftAssertions();
softly.assertThat(success).as("Exit success").isTrue();

// Assert that 2 + 3 + 6 outputs 11
softly.assertThat(stdOut.toString()).as("stdout").isEqualTo("11");
softly.assertThat(stdErr.toString()).as("stderr").isEmpty();
softly.assertAll();

}
}

2.11.6 Testing Database Interactions

In Dropwizard, the database access is managed via the @UnitOfWork annotation used on resource methods. In
case you want to test database-layer code independently, a DAOTestRule is provided which setups a Hibernate
SessionFactory.

public class DatabaseTest {

@Rule
public DAOTestRule database = DAOTestRule.newBuilder().addEntityClass(FooEntity.

→˓class).build();

private FooDAO fooDAO;

@Before
public void setUp() {

fooDAO = new FooDAO(database.getSessionFactory());
}

@Test
(continues on next page)

2.11. Testing Dropwizard 75

Dropwizard Documentation, Release @project.version@

(continued from previous page)

public createsFoo() {
FooEntity fooEntity = new FooEntity("bar");
long id = database.inTransaction(() -> {

return fooDAO.save(fooEntity);
});

assertThat(fooEntity.getId, notNullValue());
}

@Test
public roundtripsFoo() {

long id = database.inTransaction(() -> {
return fooDAO.save(new FooEntity("baz"));

});

FooEntity fooEntity = fooDAO.get(id);

assertThat(fooEntity.getFoo(), equalTo("baz"));
}

}

The DAOTestRule

• Creates a simple default Hibernate configuration using an H2 in-memory database

• Provides a SessionFactory instance which can be passed to, e.g., a subclass of AbstractDAO

• Provides a function for executing database operations within a transaction

2.12 Dropwizard Example, Step by Step

The dropwizard-example module provides you with a working Dropwizard Example Application.

• Preconditions

– Make sure you have Maven installed

– Make sure JAVA_HOME points at JDK 8

– Make sure you have curl

• Preparations to start the Dropwizard Example Application

– Open a terminal / cmd

– Navigate to the project folder of the Dropwizard Example Application

– mvn clean install

– java -jar target/dropwizard-example-1.0.0.jar db migrate example.yml

– The statement above ran the liquibase migration in /src/main/resources/migrations.xml,
creating the table schema

• Starting the Dropwizard Example Application

– You can now start the Dropwizard Example Application by running java -jar target/
dropwizard-example-1.0.0.jar server example.yml

76 Chapter 2. User Manual

https://maven.apache.org/

Dropwizard Documentation, Release @project.version@

– Alternatively, you can run the Dropwizard Example Application in your IDE: com.example.
helloworld.HelloWorldApplication server example.yml

• Working with the Dropwizard Example Application

– Insert a new person: curl -H "Content-Type: application/json" -d
'{"fullName":"John Doe", "jobTitle" : "Chief Wizard" }' http://
localhost:8080/people

– Retrieve that person: curl http://localhost:8080/people/1

– View that person in a freemarker template: curl or open in a browser http://localhost:8080/
people/1/view_freemarker

– View that person in a mustache template: curl or open in a browser http://localhost:8080/
people/1/view_mustache

2.13 Dropwizard Configuration Reference

2.13.1 Servers

server:
type: default
maxThreads: 1024

2.13. Dropwizard Configuration Reference 77

Dropwizard Documentation, Release @project.version@

All

Name Default Description
type default

• default
• simple

maxThreads 1024 The maximum number of threads to
use for requests.

minThreads 8 The minimum number of threads to
use for requests.

maxQueuedRequests 1024 The maximum number of requests
to queue before blocking the accep-
tors.

idleThreadTimeout 1 minute The amount of time a worker thread
can be idle before being stopped.

nofileSoftLimit (none) The number of open file descriptors
before a soft error is issued. Re-
quires Jetty’s libsetuid.so on
java.library.path.

nofileHardLimit (none) The number of open file descriptors
before a hard error is issued. Re-
quires Jetty’s libsetuid.so on
java.library.path.

gid (none) The group ID to switch to once the
connectors have started. Requires
Jetty’s libsetuid.so on java.
library.path.

uid (none) The user ID to switch to once the
connectors have started. Requires
Jetty’s libsetuid.so on java.
library.path.

user (none) The username to switch to once the
connectors have started. Requires
Jetty’s libsetuid.so on java.
library.path.

group (none) The group to switch to once the
connectors have started. Requires
Jetty’s libsetuid.so on java.
library.path.

umask (none) The umask to switch to once the
connectors have started. Requires
Jetty’s libsetuid.so on java.
library.path.

startsAsRoot (none) Whether or not the Dropwizard ap-
plication is started as a root user.
Requires Jetty’s libsetuid.so
on java.library.path.

shutdownGracePeriod 30 seconds The maximum time to wait for
Jetty, and all Managed instances,
to cleanly shutdown before forcibly
terminating them.

allowedMethods GET, POST, PUT, DELETE, HEAD,
OPTIONS, PATCH

The set of allowed HTTP methods.
Others will be rejected with a 405
Method Not Allowed response.

rootPath /* The URL pattern relative to
applicationContextPath
from which the JAX-RS resources
will be served.

registerDefaultExceptionMappers true Whether or not the default Jersey
ExceptionMappers should be regis-
tered. Set this to false if you want to
register your own.

78 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

GZip

server:
gzip:
bufferSize: 8KiB

Name De-
fault

Description

enabled true If true, all requests with gzip or deflate in the Accept-Encoding header will
have their response entities compressed and requests with gzip or deflate in the
Content-Encoding header will have their request entities decompressed.

minimu-
mEntity-
Size

256
bytes

All response entities under this size are not compressed.

bufferSize 8KiB The size of the buffer to use when compressing.
exclude-
dUserA-
gentPat-
terns

[] The set of user agent patterns to exclude from compression.

com-
pressed-
Mime-
Types

Jetty’s
de-
fault

The list of mime types to compress. The default is all types apart the commonly known
image, video, audio and compressed types.

included-
Methods

Jetty’s
de-
fault

The list list of HTTP methods to compress. The default is to compress only GET responses.

deflate-
Compres-
sionLevel

-1 The compression level used for ZLIB deflation(compression).

gzipCom-
patibleIn-
flation

true If true, then ZLIB inflation(decompression) will be performed in the GZIP-compatible mode.

Request Log

The new request log uses the logback-access library for processing request logs, which allow to use an extended set of
logging patterns. See the logback-access-pattern docs for the reference.

server:
requestLog:
appenders:
- type: console

Name Default Description
appen-
ders

console ap-
pender

The set of AppenderFactory appenders to which requests will be logged. TODO See
logging/appender refs for more info

2.13. Dropwizard Configuration Reference 79

http://logback.qos.ch/access.html
http://logback.qos.ch/manual/layouts.html#AccessPatternLayout

Dropwizard Documentation, Release @project.version@

Classic Request Log

The classic request log uses the logback-classic library for processing request logs. It produces logs only in the
standard NCSA common log format, but allows to use an extended set of appenders.

server:
requestLog:
type: classic
timeZone: UTC
appenders:
- type: console

Name Default Description
time-
Zone

UTC The time zone to which request timestamps will be converted.

appen-
ders

console ap-
pender

The set of AppenderFactory appenders to which requests will be logged. TODO See
logging/appender refs for more info

Server Push

Server push technology allows a server to send additional resources to a client along with the requested resource. It
works only for HTTP/2 connections.

server:
serverPush:
enabled: true
associatePeriod: '4 seconds'
maxAssociations: 16
refererHosts: ['dropwizard.io', 'dropwizard.github.io']
refererPorts: [8444, 8445]

80 Chapter 2. User Manual

http://logback.qos.ch/
https://en.wikipedia.org/wiki/Common_Log_Format

Dropwizard Documentation, Release @project.version@

NameDe-
fault

Description

en-
abled

false If true, the filter will organize resources as primary resources (those referenced by the Referer
header) and secondary resources (those that have the Referer header). Secondary resources that
have been requested within a time window from the request of the primary resource will be associated
with the it. The next time a client will request the primary resource, the server will send to the client
the secondary resources along with the primary in a single response.

as-
so-
ci-
ate-
Pe-
riod

4
sec-
onds

The time window within which a request for a secondary resource will be associated to a primary
resource..

max-
As-
so-
cia-
tions

16 The maximum number of secondary resources that may be associated to a primary resource.

ref-
er-
erHosts

All
hosts

The list of referrer hosts for which the server push technology is supported.

ref-
er-
erPorts

All
ports

The list of referrer ports for which the server push technology is supported

Simple

Extends the attributes that are available to all servers

server:
type: simple
applicationContextPath: /application
adminContextPath: /admin
connector:
type: http
port: 8080

Name De-
fault

Description

connector http
con-
nector

HttpConnectorFactory HTTP connector listening on port 8080. The ConnectorFactory
connector which will handle both application and admin requests. TODO link to connector
below.

applica-
tionCon-
textPath

/appli-
cation

The context path of the application servlets, including Jersey.

adminCon-
textPath

/admin The context path of the admin servlets, including metrics and tasks.

Default

Extends the attributes that are available to all servers

2.13. Dropwizard Configuration Reference 81

Dropwizard Documentation, Release @project.version@

server:
adminMinThreads: 1
adminMaxThreads: 64
adminContextPath: /
applicationContextPath: /
applicationConnectors:
- type: http

port: 8080
- type: https

port: 8443
keyStorePath: example.keystore
keyStorePassword: example
validateCerts: false

adminConnectors:
- type: http

port: 8081
- type: https

port: 8444
keyStorePath: example.keystore
keyStorePassword: example
validateCerts: false

Name Default Description
application-
Connectors

An HTTP connector listen-
ing on port 8080.

A set of connectors which will handle application requests.

adminConnec-
tors

An HTTP connector listen-
ing on port 8081.

An HTTP connector listening on port 8081. A set of connectors
which will handle admin requests.

admin-
MinThreads

1 The minimum number of threads to use for admin requests.

adminMax-
Threads

64 The maximum number of threads to use for admin requests.

adminCon-
textPath

/ The context path of the admin servlets, including metrics and
tasks.

application-
ContextPath

/ The context path of the application servlets, including Jersey.

2.13.2 Connectors

HTTP

Extending from the default server configuration
server:

applicationConnectors:
- type: http

port: 8080
bindHost: 127.0.0.1 # only bind to loopback
inheritChannel: false
headerCacheSize: 512 bytes
outputBufferSize: 32KiB
maxRequestHeaderSize: 8KiB
maxResponseHeaderSize: 8KiB
inputBufferSize: 8KiB
idleTimeout: 30 seconds

(continues on next page)

82 Chapter 2. User Manual

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java

Dropwizard Documentation, Release @project.version@

(continued from previous page)

minBufferPoolSize: 64 bytes
bufferPoolIncrement: 1KiB
maxBufferPoolSize: 64KiB
acceptorThreads: 1
selectorThreads: 2
acceptQueueSize: 1024
reuseAddress: true
soLingerTime: 345s
useServerHeader: false
useDateHeader: true
useForwardedHeaders: true

2.13. Dropwizard Configuration Reference 83

Dropwizard Documentation, Release @project.version@

Name De-
fault

Description

port 8080 The TCP/IP port on which to listen for incoming connections.
bind-
Host

(none) The hostname to bind to.

in-
her-
itChan-
nel

false Whether this connector uses a channel inherited from the JVM. Use it with Server::Starter, to launch
an instance of Jetty on demand.

head-
er-
Cache-
Size

512
bytes

The size of the header field cache.

out-
put-
Buffer-
Size

32KiBThe size of the buffer into which response content is aggregated before being sent to the client.
A larger buffer can improve performance by allowing a content producer to run without blocking,
however larger buffers consume more memory and may induce some latency before a client starts
processing the content.

maxRe-
quest-
Head-
er-
Size

8KiB The maximum size of a request header. Larger headers will allow for more and/or larger cookies
plus larger form content encoded in a URL. However, larger headers consume more memory and
can make a server more vulnerable to denial of service attacks.

maxRe-
spon-
se-
Head-
er-
Size

8KiB The maximum size of a response header. Larger headers will allow for more and/or larger cookies
and longer HTTP headers (eg for redirection). However, larger headers will also consume more
memory.

in-
put-
Buffer-
Size

8KiB The size of the per-connection input buffer.

idle-
Time-
out

30
sec-
onds

The maximum idle time for a connection, which roughly translates to the
java.net.Socket#setSoTimeout(int) call, although with NIO implementations other mechanisms may
be used to implement the timeout. The max idle time is applied when waiting for a new message to
be received on a connection or when waiting for a new message to be sent on a connection. This
value is interpreted as the maximum time between some progress being made on the connection. So
if a single byte is read or written, then the timeout is reset.

min-
Buffer-
Pool-
Size

64
bytes

The minimum size of the buffer pool.

buffer-
PoolIn-
cre-
ment

1KiB The increment by which the buffer pool should be increased.

maxBuffer-
Pool-
Size

64KiBThe maximum size of the buffer pool.

ac-
cep-
torThreads

#
of
CPUs/2

The number of worker threads dedicated to accepting connections.

se-
lec-
torThreads

#
of
CPUs

The number of worker threads dedicated to sending and receiving data.

ac-
cep-
tQueue-
Size

(OS
de-
fault)

The size of the TCP/IP accept queue for the listening socket.

reuse-
Ad-
dress

true Whether or not SO_REUSEADDR is enabled on the listening socket.

soLinger-
Time

(dis-
abled)

Enable/disable SO_LINGER with the specified linger time.

us-
eServer-
Header

false Whether or not to add the Server header to each response.

use-
Date-
Header

true Whether or not to add the Date header to each response.

use-
For-
ward-
ed-
Head-
ers

true Whether or not to look at X-Forwarded-* headers added by proxies. See ForwardedRequest-
Customizer for details.

84 Chapter 2. User Manual

https://github.com/kazuho/p5-Server-Starter
http://docs.oracle.com/javase/7/docs/api/java/net/Socket.html#setSoTimeout(int)
http://download.eclipse.org/jetty/stable-9/apidocs/org/eclipse/jetty/server/ForwardedRequestCustomizer.html
http://download.eclipse.org/jetty/stable-9/apidocs/org/eclipse/jetty/server/ForwardedRequestCustomizer.html

Dropwizard Documentation, Release @project.version@

HTTPS

Extends the attributes that are available to the HTTP connector

Extending from the default server configuration
server:

applicationConnectors:
- type: https

port: 8443
....
keyStorePath: /path/to/file
keyStorePassword: changeit
keyStoreType: JKS
keyStoreProvider:
trustStorePath: /path/to/file
trustStorePassword: changeit
trustStoreType: JKS
trustStoreProvider:
keyManagerPassword: changeit
needClientAuth: false
wantClientAuth:
certAlias: <alias>
crlPath: /path/to/file
enableCRLDP: false
enableOCSP: false
maxCertPathLength: (unlimited)
ocspResponderUrl: (none)
jceProvider: (none)
validateCerts: false
validatePeers: false
supportedProtocols: (JVM default)
excludedProtocols: [SSL, SSLv2, SSLv2Hello, SSLv3] # (Jetty's default)
supportedCipherSuites: (JVM default)
excludedCipherSuites: [.*_(MD5|SHA|SHA1)$] # (Jetty's default)
allowRenegotiation: true
endpointIdentificationAlgorithm: (none)

2.13. Dropwizard Configuration Reference 85

Dropwizard Documentation, Release @project.version@

Name De-
fault

Description

key-
StorePath

RE-
QUIRED

The path to the Java key store which contains the host certificate and private key.

key-
StorePass-
word

RE-
QUIRED

The password used to access the key store.

key-
Store-
Type

JKS The type of key store (usually JKS, PKCS12, JCEKS, Windows-MY}, or Windows-ROOT).

key-
Store-
Provider

(none) The JCE provider to use to access the key store.

trust-
StorePath

(none) The path to the Java key store which contains the CA certificates used to establish trust.

trust-
StorePass-
word

(none) The password used to access the trust store.

trust-
Store-
Type

JKS The type of trust store (usually JKS, PKCS12, JCEKS, Windows-MY, or Windows-ROOT).

trust-
Store-
Provider

(none) The JCE provider to use to access the trust store.

key-
Man-
ager-
Pass-
word

(none) The password, if any, for the key manager.

need-
Clien-
tAuth

(none) Whether or not client authentication is required.

want-
Clien-
tAuth

(none) Whether or not client authentication is requested.

cer-
tAlias

(none) The alias of the certificate to use.

crl-
Path

(none) The path to the file which contains the Certificate Revocation List.

en-
able-
CRLDP

false Whether or not CRL Distribution Points (CRLDP) support is enabled.

en-
ableOCSP

false Whether or not On-Line Certificate Status Protocol (OCSP) support is enabled.

max-
Cert-
Path-
Length

(un-
lim-
ited)

The maximum certification path length.

oc-
spRe-
spon-
derUrl

(none) The location of the OCSP responder.

jce-
Provider

(none) The name of the JCE provider to use for cryptographic support.

vali-
date-
Certs

false Whether or not to validate TLS certificates before starting. If enabled, Dropwizard will refuse to
start with expired or otherwise invalid certificates. This option will cause unconditional failure in
Dropwizard 1.x until a new validation mechanism can be implemented.

vali-
date-
Peers

false Whether or not to validate TLS peer certificates. This option will cause unconditional failure in
Dropwizard 1.x until a new validation mechanism can be implemented.

sup-
port-
edPro-
tocols

(none) A list of protocols (e.g., SSLv3, TLSv1) which are supported. All other protocols will be refused.

ex-
clud-
edPro-
tocols

(none) A list of protocols (e.g., SSLv3, TLSv1) which are excluded. These protocols will be refused.

sup-
port-
edCi-
pher-
Suites

(none) A list of cipher suites (e.g., TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256) which are
supported. All other cipher suites will be refused

ex-
clud-
edCi-
pher-
Suites

(none) A list of cipher suites (e.g., TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256) which
are excluded. These cipher suites will be refused and exclusion takes higher precedence
than inclusion, such that if a cipher suite is listed in supportedCipherSuites and
excludedCipherSuites, the cipher suite will be excluded. To verify that the proper cipher
suites are being whitelisted and blacklisted, it is recommended to use the tool sslyze.

al-
lowRene-
gotia-
tion

true Whether or not TLS renegotiation is allowed.

end-
pointI-
denti-
fica-
tion-
Algo-
rithm

(none) Which endpoint identification algorithm, if any, to use during the TLS handshake.

86 Chapter 2. User Manual

https://github.com/nabla-c0d3/sslyze

Dropwizard Documentation, Release @project.version@

HTTP/2 over TLS

HTTP/2 is a new protocol, intended as a successor of HTTP/1.1. It adds several important features like binary structure,
stream multiplexing over a single connection, header compression, and server push. At the same time it remains
semantically compatible with HTTP/1.1, which should make the upgrade process more seamless. Checkout HTTP/2
FAQ for the further information.

For an encrypted connection HTTP/2 uses ALPN protocol. It’s a TLS extension, that allows a client to negotiate
a protocol to use after the handshake is complete. If either side does not support ALPN, then the protocol will be
ignored, and an HTTP/1.1 connection over TLS will be used instead.

For this connector to work with ALPN protocol you need to provide alpn-boot library to JVM’s bootpath. The correct
library version depends on a JVM version. Consult Jetty ALPN guide for the reference.

Note that your JVM also must provide TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 cipher. The specifica-
tion states that HTTP/2 deployments must support it to avoid handshake failures. It’s the single supported cipher in
HTTP/2 connector by default.

This connector extends the attributes that are available to the HTTPS connector

server:
applicationConnectors:
- type: h2

port: 8445
maxConcurrentStreams: 1024
initialStreamRecvWindow: 65535
keyStorePath: /path/to/file # required
keyStorePassword: changeit
trustStorePath: /path/to/file # required
trustStorePassword: changeit
supportedCipherSuites: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

Name De-
fault

Description

maxConcur-
rentStreams

1024 The maximum number of concurrently open streams allowed on a single HTTP/2 connec-
tion. Larger values increase parallelism, but cost a memory commitment.

initialStream-
RecvWindow

65535 The initial flow control window size for a new stream. Larger values may allow greater
throughput, but also risk head of line blocking if TCP/IP flow control is triggered.

HTTP/2 Plain Text

HTTP/2 promotes using encryption, but doesn’t require it. However, most browsers stated that they will not support
HTTP/2 without encryption. Currently no browser supports HTTP/2 unencrypted.

The connector should only be used in closed secured networks or during development. It expects from clients an
HTTP/1.1 OPTIONS request with Upgrade : h2c header to indicate a wish to upgrade to HTTP/2, or a request
with the HTTP/2 connection preface. If the client doesn’t support HTTP/2, a plain HTTP/1.1 connections will be used
instead.

This connector extends the attributes that are available to the HTTP connector

server:
applicationConnectors:
- type: h2c

port: 8446
maxConcurrentStreams: 1024
initialStreamRecvWindow: 65535

2.13. Dropwizard Configuration Reference 87

https://http2.github.io/faq/
http://www.eclipse.org/jetty/documentation/current/alpn-chapter.html
http://http2.github.io/http2-spec/index.html#rfc.section.9.2.2

Dropwizard Documentation, Release @project.version@

Name De-
fault

Description

maxConcur-
rentStreams

1024 The maximum number of concurrently open streams allowed on a single HTTP/2 connec-
tion. Larger values increase parallelism, but cost a memory commitment.

initialStream-
RecvWindow

65535 The initial flow control window size for a new stream. Larger values may allow greater
throughput, but also risk head of line blocking if TCP/IP flow control is triggered.

2.13.3 Logging

logging:
level: INFO
loggers:
"io.dropwizard": INFO
"org.hibernate.SQL":
level: DEBUG
additive: false
appenders:
- type: file
currentLogFilename: /var/log/myapplication-sql.log
archivedLogFilenamePattern: /var/log/myapplication-sql-%d.log.gz
archivedFileCount: 5

appenders:
- type: console

Name Default Description
level Level.INFO Logback logging level.
additive true Logback additive setting.
loggers (none) Individual logger configuration (both forms are acceptable).
appenders (none) One of console, file or syslog.

Console

logging:
level: INFO
appenders:
- type: console

threshold: ALL
timeZone: UTC
target: stdout
logFormat: # TODO
filterFactories:

- type: URI

88 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

Name Default Description
type RE-

QUIRED
The appender type. Must be console.

threshold ALL The lowest level of events to print to the console.
timeZone UTC The time zone to which event timestamps will be converted.
target stdout The name of the standard stream to which events will be written. Can be stdout or

stderr.
logFormat default The Logback pattern with which events will be formatted. See the Logback documen-

tation for details.
filterFacto-
ries

(none) The list of filters to apply to the appender, in order, after the thresold.

File

logging:
level: INFO
appenders:
- type: file

currentLogFilename: /var/log/myapplication.log
threshold: ALL
archive: true
archivedLogFilenamePattern: /var/log/myapplication-%d.log
archivedFileCount: 5
timeZone: UTC
logFormat: # TODO
filterFactories:

- type: URI

2.13. Dropwizard Configuration Reference 89

http://logback.qos.ch/manual/layouts.html#conversionWord

Dropwizard Documentation, Release @project.version@

Name De-
fault

Description

type RE-
QUIRED

The appender type. Must be file.

cur-
rent-
Log-
File-
name

RE-
QUIRED

The filename where current events are logged.

thresh-
old

ALL The lowest level of events to write to the file.

archive true Whether or not to archive old events in separate files.
archived-
Log-
File-
namePat-
tern

(none) Required if archive is true. The filename pattern for archived files. If maxFileSize is
specified, rollover is size-based, and the pattern must contain %i for an integer index of the
archived file. Otherwise rollover is date-based, and the pattern must contain %d, which is re-
placed with the date in yyyy-MM-dd form. If the pattern ends with .gz or .zip, files will be
compressed as they are archived.

archived-
File-
Count

5 The number of archived files to keep. Must be greater than or equal to 0. Zero is a special value
signifying to keep infinite logs (use with caution)

max-
File-
Size

(un-
lim-
ited)

The maximum size of the currently active file before a rollover is triggered. The value can be
expressed in bytes, kilobytes, megabytes, gigabytes, and terabytes by appending B, K, MB, GB,
or TB to the numeric value. Examples include 100MB, 1GB, 1TB. Sizes can also be spelled out,
such as 100 megabytes, 1 gigabyte, 1 terabyte.

time-
Zone

UTC The time zone to which event timestamps will be converted.

log-
For-
mat

de-
fault

The Logback pattern with which events will be formatted. See the Logback documentation for
details.

filter-
Facto-
ries

(none) The list of filters to apply to the appender, in order, after the thresold.

Syslog

logging:
level: INFO
appenders:
- type: syslog

host: localhost
port: 514
facility: local0
threshold: ALL
stackTracePrefix: \t
logFormat: # TODO
filterFactories:

- type: URI

90 Chapter 2. User Manual

http://logback.qos.ch/manual/layouts.html#conversionWord

Dropwizard Documentation, Release @project.version@

Name De-
fault

Description

host lo-
cal-
host

The hostname of the syslog server.

port 514 The port on which the syslog server is listening.
facility lo-

cal0
The syslog facility to use. Can be either auth, authpriv, daemon, cron, ftp, lpr,
kern, mail, news, syslog, user, uucp, local0, local1, local2, local3, local4,
local5, local6, or local7.

thresh-
old

ALL The lowest level of events to write to the file.

log-
Format

de-
fault

The Logback pattern with which events will be formatted. See the Logback documentation for
details.

stack-
Tra-
cePre-
fix

t The prefix to use when writing stack trace lines (these are sent to the syslog server separately
from the main message)

filter-
Facto-
ries

(none) The list of filters to apply to the appender, in order, after the thresold.

FilterFactories

logging:
level: INFO
appenders:
- type: console

filterFactories:
- type: URI

Name Default Description
type REQUIRED The filter type.

2.13.4 Metrics

The metrics configuration has two fields; frequency and reporters.

metrics:
frequency: 1 minute
reporters:
- type: <type>

Name Default Description
frequency 1 minute The frequency to report metrics. Overridable per-reporter.
reporters (none) A list of reporters to report metrics.

All Reporters

The following options are available for all metrics reporters.

2.13. Dropwizard Configuration Reference 91

http://logback.qos.ch/manual/layouts.html#conversionWord

Dropwizard Documentation, Release @project.version@

metrics:
reporters:
- type: <type>

durationUnit: milliseconds
rateUnit: seconds
excludes: (none)
includes: (all)
useRegexFilters: false
frequency: 1 minute

Name Default Description
duratio-
nUnit

millisec-
onds

The unit to report durations as. Overrides per-metric duration units.

rateUnit seconds The unit to report rates as. Overrides per-metric rate units.
excludes (none) Metrics to exclude from reports, by name. When defined, matching metrics will not be

reported.
includes (all) Metrics to include in reports, by name. When defined, only these metrics will be re-

ported.
useRegex-
Filters

false Indicates whether the values of the ‘includes’ and ‘excludes’ fields should be treated as
regular expressions or not.

frequency (none) The frequency to report metrics. Overrides the default.

The inclusion and exclusion rules are defined as:

• If includes is empty, then all metrics are included;

• If includes is not empty, only metrics from this list are included;

• If excludes is empty, no metrics are excluded;

• If excludes is not empty, then exclusion rules take precedence over inclusion rules. Thus if a name matches the
exclusion rules it will not be included in reports even if it also matches the inclusion rules.

Formatted Reporters

These options are available only to “formatted” reporters and extend the options available to all reporters

metrics:
reporters:
- type: <type>

locale: <system default>

Name Default Description
locale System default The Locale for formatting numbers, dates and times.

Console Reporter

Reports metrics periodically to the console.

Extends the attributes that are available to formatted reporters

92 Chapter 2. User Manual

http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html

Dropwizard Documentation, Release @project.version@

metrics:
reporters:
- type: console

timeZone: UTC
output: stdout

Name Default Description
timeZone UTC The timezone to display dates/times for.
output stdout The stream to write to. One of stdout or stderr.

CSV Reporter

Reports metrics periodically to a CSV file.

Extends the attributes that are available to formatted reporters

metrics:
reporters:
- type: csv

file: /path/to/file

Name Default Description
file No default The CSV file to write metrics to.

Ganglia Reporter

Reports metrics periodically to Ganglia.

Extends the attributes that are available to all reporters

Note: You will need to add dropwizard-metrics-ganglia to your POM.

metrics:
reporters:
- type: ganglia

host: localhost
port: 8649
mode: unicast
ttl: 1
uuid: (none)
spoof: localhost:8649
tmax: 60
dmax: 0

2.13. Dropwizard Configuration Reference 93

Dropwizard Documentation, Release @project.version@

Name De-
fault

Description

host local-
host

The hostname (or group) of the Ganglia server(s) to report to.

port 8649 The port of the Ganglia server(s) to report to.
mode unicast The UDP addressing mode to announce the metrics with. One of unicast or multicast.
ttl 1 The time-to-live of the UDP packets for the announced metrics.
uuid (none) The UUID to tag announced metrics with.
spoof (none) The hostname and port to use instead of this nodes for the announced metrics. In the format

hostname:port.
tmax 60 The tmax value to announce metrics with.
dmax 0 The dmax value to announce metrics with.

Graphite Reporter

Reports metrics periodically to Graphite.

Extends the attributes that are available to all reporters

Note: You will need to add dropwizard-metrics-graphite to your POM.

metrics:
reporters:
- type: graphite

host: localhost
port: 8080
prefix: <prefix>

Name Default Description
host localhost The hostname of the Graphite server to report to.
port 8080 The port of the Graphite server to report to.
prefix (none) The prefix for Metric key names to report to Graphite.

SLF4J

Reports metrics periodically by logging via SLF4J.

Extends the attributes that are available to all reporters

See BaseReporterFactory and BaseFormattedReporterFactory for more options.

metrics:
reporters:
- type: log

logger: metrics
markerName: <marker name>

Name Default Description
logger metrics The name of the logger to write metrics to.
markerName (none) The name of the marker to mark logged metrics with.

94 Chapter 2. User Manual

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-metrics/src/main/java/io/dropwizard/metrics/BaseReporterFactory.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-metrics/src/main/java/io/dropwizard/metrics/BaseFormattedReporterFactory.java

Dropwizard Documentation, Release @project.version@

2.13.5 Clients

HttpClient

See HttpClientConfiguration for more options.

httpClient:
timeout: 500ms
connectionTimeout: 500ms
timeToLive: 1h
cookiesEnabled: false
maxConnections: 1024
maxConnectionsPerRoute: 1024
keepAlive: 0ms
retries: 0
userAgent: <application name> (<client name>)

Name Default Description
timeout 500 millisec-

onds
The maximum idle time for a connection, once established.

connec-
tionTime-
out

500 millisec-
onds

The maximum time to wait for a connection to open.

connec-
tionRe-
quest-
Timeout

500 millisec-
onds

The maximum time to wait for a connection to be returned from the connection
pool.

timeTo-
Live

1 hour The maximum time a pooled connection can stay idle (not leased to any thread)
before it is shut down.

cook-
iesEn-
abled

false Whether or not to enable cookies.

maxCon-
nections

1024 The maximum number of concurrent open connections.

maxCon-
nection-
sPerRoute

1024 The maximum number of concurrent open connections per route.

keepAlive 0 milliseconds The maximum time a connection will be kept alive before it is reconnected. If set
to 0, connections will be immediately closed after every request/response.

retries 0 The number of times to retry failed requests. Requests are only re-
tried if they throw an exception other than InterruptedIOException,
UnknownHostException, ConnectException, or SSLException.

userAgent applicationName
(clientName)

The User-Agent to send with requests.

vali-
dateAf-
terInactiv-
ityPeriod

0 milliseconds The maximum time before a persistent connection is checked to remain active. If
set to 0, no inactivity check will be performed.

2.13. Dropwizard Configuration Reference 95

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/HttpClientConfiguration.java

Dropwizard Documentation, Release @project.version@

Proxy

httpClient:
proxy:
host: 192.168.52.11
port: 8080
scheme : http
auth:

username: secret
password: stuff

nonProxyHosts:
- localhost
- '192.168.52.*'
- '*.example.com'

Name Default Description
host RE-

QUIRED
The proxy server host name or ip address.

port (scheme
default)

The proxy server port. If the port is not set then the scheme default port is used.

scheme http The proxy server URI scheme. HTTP and HTTPS schemas are permitted. By default HTTP
scheme is used.

auth (none) The proxy server BASIC authentication credentials. If they are not set then no credentials will
be passed to the server.

user-
name

RE-
QUIRED

The username used to connect to the server.

pass-
word

RE-
QUIRED

The password used to connect to the server.

non-
Proxy-
Hosts

(none) List of patterns of hosts that should be reached without proxy. The patterns may contain
symbol ‘*’ as a wildcard. If a host matches one of the patterns it will be reached through a
direct connection.

TLS

httpClient:
tls:
protocol: TLSv1.2
verifyHostname: true
keyStorePath: /path/to/file
keyStorePassword: changeit
keyStoreType: JKS
trustStorePath: /path/to/file
trustStorePassword: changeit
trustStoreType: JKS
trustSelfSignedCertificates: false
supportedProtocols: TLSv1.1,TLSv1.2
supportedCipherSuites: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

96 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

Name De-
fault

Description

protocol TLSv1.2The default protocol the client will attempt to use during the SSL Handshake. See here
for more information.

verifyHost-
name

true Whether to verify the hostname of the server against the hostname presented in the
server certificate.

keyStorePath (none) The path to the Java key store which contains the client certificate and private key.
keyStorePass-
word

(none) The password used to access the key store.

keyStoreType JKS The type of key store (usually JKS, PKCS12, JCEKS, Windows-MY, or
Windows-ROOT).

trustStorePath (none) The path to the Java key store which contains the CA certificates used to establish trust.
trustStorePass-
word

(none) The password used to access the trust store.

trustStoreType JKS The type of trust store (usually JKS, PKCS12, JCEKS, Windows-MY, or
Windows-ROOT).

trustSelf-
SignedCertifi-
cates

false Whether the client will trust certificates of servers that are self-signed.

supportedPro-
tocols

(none) A list of protocols (e.g., SSLv3, TLSv1) which are supported. All other protocols will
be refused.

supportedCi-
pherSuites

(none) A list of cipher suites (e.g., TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256)
which are supported. All other cipher suites will be refused.

JerseyClient

Extends the attributes that are available to http clients

See JerseyClientConfiguration and HttpClientConfiguration for more options.

jerseyClient:
minThreads: 1
maxThreads: 128
workQueueSize: 8
gzipEnabled: true
gzipEnabledForRequests: true
chunkedEncodingEnabled: true

2.13. Dropwizard Configuration Reference 97

http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#SSLContext
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/JerseyClientConfiguration.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/HttpClientConfiguration.java

Dropwizard Documentation, Release @project.version@

Name De-
fault

Description

minThreads1 The minimum number of threads in the pool used for asynchronous requests.
max-
Threads

128 The maximum number of threads in the pool used for asynchronous requests. If asynchronous
requests made by jersey client while serving requests, the number must be set according to the
maxThread setting of the server. Otherwise some requests made to dropwizard on heavy load
may fail due to congestion on the jersey client’s thread pool.

workQueue-
Size

8 The size of the work queue of the pool used for asynchronous requests. Additional threads will
be spawn only if the queue is reached its maximum size.

gzipEn-
abled

true Adds an Accept-Encoding: gzip header to all requests, and enables automatic gzip decoding of
responses.

gzipEn-
abled-
ForRe-
quests

true Adds a Content-Encoding: gzip header to all requests, and enables automatic gzip encoding of
requests.

chun-
kedEn-
codin-
gEn-
abled

true Enables the use of chunked encoding for requests.

2.13.6 Database

database:
driverClass : org.postgresql.Driver
url: 'jdbc:postgresql://db.example.com/db-prod'
user: pg-user
password: iAMs00perSecrEET

Name Default Description
driverClass REQUIRED The full name of the JDBC driver class.
url REQUIRED The URL of the server.
user none The username used to connect to the server.
password none The password used to connect to the server.
removeAbandoned false Remove abandoned connections if they exceed removeAbandonedTimeout. If set to true a connection is considered abandoned and eligible for removal if it has been in use longer than the removeAbandonedTimeout and the condition for abandonWhenPercentageFull is met.
removeAbandonedTimeout 60 seconds The time before a database connection can be considered abandoned.
abandonWhenPercentageFull 0 Connections that have been abandoned (timed out) won’t get closed and reported up unless the number of connections in use are above the percentage defined by abandonWhenPercentageFull. The value should be between 0-100.
alternateUsernamesAllowed false Set to true if the call getConnection(username,password) is allowed. This is used for when the pool is used by an application accessing multiple schemas. There is a performance impact turning this option on, even when not used.
commitOnReturn false Set to true if you want the connection pool to commit any pending transaction when a connection is returned.
rollbackOnReturn false Set to true if you want the connection pool to rollback any pending transaction when a connection is returned.
autoCommitByDefault JDBC driver’s default The default auto-commit state of the connections.
readOnlyByDefault JDBC driver’s default The default read-only state of the connections.
properties none Any additional JDBC driver parameters.
defaultCatalog none The default catalog to use for the connections.
defaultTransactionIsolation JDBC driver’s default The default transaction isolation to use for the connections. Can be one of none, default, read-uncommitted, read-committed, repeatable-read, or serializable.
useFairQueue true If true, calls to getConnection are handled in a FIFO manner.
initialSize 10 The initial size of the connection pool.
minSize 10 The minimum size of the connection pool.
maxSize 100 The maximum size of the connection pool.
initializationQuery none A custom query to be run when a connection is first created.

Continued on next page

98 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

Table 1 – continued from previous page
Name Default Description
logAbandonedConnections false If true, logs stack traces of abandoned connections.
logValidationErrors false If true, logs errors when connections fail validation.
maxConnectionAge none If set, connections which have been open for longer than maxConnectionAge are closed when returned.
maxWaitForConnection 30 seconds If a request for a connection is blocked for longer than this period, an exception will be thrown.
minIdleTime 1 minute The minimum amount of time an connection must sit idle in the pool before it is eligible for eviction.
validationQuery SELECT 1 The SQL query that will be used to validate connections from this pool before returning them to the caller or pool. If specified, this query does not have to return any data, it just can’t throw a SQLException.(FireBird will throw exception unless validationQuery set to select 1 from rdb$database)
validationQueryTimeout none The timeout before a connection validation queries fail.
checkConnectionWhileIdle true Set to true if query validation should take place while the connection is idle.
checkConnectionOnBorrow false Whether or not connections will be validated before being borrowed from the pool. If the connection fails to validate, it will be dropped from the pool, and another will be borrowed.
checkConnectionOnConnect false Whether or not connections will be validated before being added to the pool. If the connection fails to validate, it won’t be added to the pool.
checkConnectionOnReturn false Whether or not connections will be validated after being returned to the pool. If the connection fails to validate, it will be dropped from the pool.
autoCommentsEnabled true Whether or not ORMs should automatically add comments.
evictionInterval 5 seconds The amount of time to sleep between runs of the idle connection validation, abandoned cleaner and idle pool resizing.
validationInterval 30 seconds To avoid excess validation, only run validation once every interval.
validatorClassName none Name of a class of a custom validator implementation, which will be used for validating connections.

2.13.7 Polymorphic configuration

The dropwizard-configuration module provides you with a polymorphic configuration mecha-
nism, meaning that a particular section of your configuration file can be implemented using one or
more configuration classes.

To use this capability for your own configuration classes, create a top-level configuration interface or class that imple-
ments Discoverable and add the name of that class to META-INF/services/io.dropwizard.jackson.
Discoverable. Make sure to use Jackson polymorphic deserialization annotations appropriately.

@JsonTypeInfo(use = Id.NAME, include = As.PROPERTY, property = "type")
interface WidgetFactory extends Discoverable {

Widget createWidget();
}

Then create subtypes of the top-level type corresponding to each alternative, and add their names to META-INF/
services/WidgetFactory.

@JsonTypeName("hammer")
public class HammerFactory implements WidgetFactory {

@JsonProperty
private int weight = 10;

@Override
public Hammer createWidget() {

return new Hammer(weight);
}

}

@JsonTypeName("chisel")
public class ChiselFactory implements WidgetFactory {

@JsonProperty
private float radius = 1;

@Override
public Chisel createWidget() {

(continues on next page)

2.13. Dropwizard Configuration Reference 99

http://wiki.fasterxml.com/JacksonPolymorphicDeserialization

Dropwizard Documentation, Release @project.version@

(continued from previous page)

return new Chisel(radius);
}

}

Now you can use WidgetFactory objects in your application’s configuration.

public class MyConfiguration extends Configuration {
@JsonProperty
@NotNull
@Valid
private List<WidgetFactory> widgets;

}

widgets:
- type: hammer
weight: 20

- type: chisel
radius: 0.4

2.14 Dropwizard Internals

You already read through the whole Dropwizard documentation? Congrats! Then you are ready to have a look into
some nitty-gritty details of Dropwizard.

2.14.1 Startup Sequence

Below you find the startup sequence of a Dropwizard Application:

1. Application.run(args)

1. new Bootstrap

2. bootstrap.addCommand(new ServerCommand)

3. bootstrap.addCommand(new CheckCommand)

4. initialize(bootstrap) (implemented by your Application)

1. bootstrap.addBundle(bundle)

1. bundle.initialize(bootstrap)

2. bootstrap.addCommand(cmd)

1. cmd.initialize()

5. new Cli(bootstrap and other params)

1. for each cmd in bootstrap.getCommands()

1. configure parser w/ cmd

6. cli.run()

1. is help flag on cmdline? if so, print usage

2. parse cmdline args, determine subcommand (rest of these notes are specific to ServerCommand)

3. command.run(bootstrap, namespace) (implementation in ConfiguredCommand)

100 Chapter 2. User Manual

Dropwizard Documentation, Release @project.version@

1. parse configuration

2. setup logging

4. command.run(bootstrap, namespace, cfg) (implementation in EnvironmentCommand)

1. create Environment

2. bootstrap.run(cfg, env)

3. for each Bundle: bundle.run()

4. for each ConfiguredBundle: bundle.run()

5. application.run(cfg, env) (implemented by your Application)

7. command.run(env, namespace, cfg) (implemented by ServerCommand)

1. starts Jetty

2.14.2 On Bundles

Running bundles happens in FIFO order (ConfiguredBundles are always run after Bundles).

2.14.3 Jetty Lifecycle

If you have a component of your app that needs to know when Jetty is going to start, you can implement Managed as
described in the dropwizard docs.

If you have a component that needs to be signaled that Jetty has started (this happens after all Managed objects’ start()
methods are called), you can register with the env’s lifecycle like:

env.lifecycle().addServerLifecycleListener(new ServerLifecycleListener() {
@Override
public void serverStarted(Server server) {

/// ... do things here
}

});

2.14. Dropwizard Internals 101

Dropwizard Documentation, Release @project.version@

102 Chapter 2. User Manual

CHAPTER 3

Javadoc

• dropwizard-auth

• dropwizard-client

• dropwizard-configuration

• dropwizard-core

• dropwizard-db

• dropwizard-forms

• dropwizard-hibernate

• dropwizard-jackson

• dropwizard-jdbi

• dropwizard-jersey

• dropwizard-jetty

• dropwizard-lifecycle

• dropwizard-logging

• dropwizard-metrics

• dropwizard-metrics-ganglia

• dropwizard-metrics-graphite

• dropwizard-migrations

• dropwizard-servlets

• dropwizard-spdy

• dropwizard-testing

• dropwizard-util

• dropwizard-validation

103

https://javadoc.io/page/io.dropwizard/dropwizard-auth/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-client/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-configuration/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-core/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-db/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-forms/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-hibernate/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-jackson/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-jdbi/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-jersey/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-jetty/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-lifecycle/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-logging/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-metrics/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-metrics-ganglia/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-metrics-graphite/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-migrations/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-servlets/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-spdy/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-testing/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-util/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-validation/1.0/index.html

Dropwizard Documentation, Release @project.version@

• dropwizard-views

• dropwizard-views-freemarker

• dropwizard-views-mustache

104 Chapter 3. Javadoc

https://javadoc.io/page/io.dropwizard/dropwizard-views/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-views-freemarker/1.0/index.html
https://javadoc.io/page/io.dropwizard/dropwizard-views-mustache/1.0/index.html

CHAPTER 4

About Dropwizard

4.1 Contributors

Dropwizard wouldn’t exist without the hard work contributed by numerous individuals.

Many, many thanks to:

• Aaron Ingram

• Adam Jordens

• Adam Jordens

• Adam Marcus

• Aidan

• akumlehn

• Alex Ausch

• Alex Butler

• Alex Heneveld

• Alice Chen

• Anders Hedström

• Andreas Petersson

• Andreas Stührk

• Andrei Savu

• Andrew Clay Shafer

• anikiej

• Antanas Končius

• Anthony Milbourne

105

https://github.com/aingram
https://github.com/adamjordens
https://github.com/ajordens
https://github.com/marcua
https://github.com/mcgin
https://github.com/akumlehn
https://github.com/aausch
https://github.com/alexheretic
https://github.com/ahgittin
https://github.com/chena
https://github.com/andershedstrom
https://github.com/apetersson
https://github.com/Trundle
https://github.com/andreisavu
https://github.com/littleidea
https://github.com/anikiej
https://github.com/akoncius
https://github.com/ant3

Dropwizard Documentation, Release @project.version@

• Arien Kock

• Armando Singer

• Artem Prigoda

• Arun Horne

• Athou

• Basil James Whitehouse III

• Ben Bader

• Ben Ripkens

• Ben Smith

• Benjamin Bentmann

• Bo Gotthardt

• Børge Nese

• Boyd Meier

• Bradley Schmidt

• Brandon Beck

• Brett Hoerner

• Brian McCallister

• Brian O’Neill

• Bruce Ritchie

• Burak Dede

• BusComp

• Børge Nese

• Cagatay Kavukcuoglu

• Cameron Fieber

• Camille Fournier

• Carl Lerche

• Carlo Barbara

• Cemalettin Koc

• Chad Selph

• Charlie Greenbacker

• Charlie La Mothe

• cheddar

• chena

• Chen Wang

• Chris Gray

• Chris Micali

106 Chapter 4. About Dropwizard

https://github.com/arienkock
https://github.com/asinger
https://github.com/arteam
https://github.com/arunh
https://github.com/Athou
https://github.com/basil3whitehouse
https://github.com/benjamin-bader
https://github.com/bripkens
https://github.com/thesmith
https://github.com/bentmann
https://github.com/Lugribossk
https://github.com/bnese
https://github.com/bwmeier
https://github.com/ToadJam
https://github.com/bbeck
https://github.com/bretthoerner
https://github.com/brianm
https://github.com/boneill42
https://github.com/Omega1
https://github.com/burakdede
https://github.com/BusComp
https://github.com/bnese
https://github.com/tinkerware
https://github.com/cfieber
https://github.com/skamille
https://github.com/carllerche
https://github.com/carlo-rtr
https://github.com/cemo
https://github.com/chadselph
https://github.com/charlieg
https://github.com/clamothe
https://github.com/cheddar
https://github.com/chena
https://github.com/cwang
https://github.com/chrisgray
https://github.com/cmicali

Dropwizard Documentation, Release @project.version@

• Chris Pimlott

• Chris Tierney

• Christoffer Eide

• Christoph Kutzinski

• Christopher Currie

• Christopher Elkins

• Christopher Gray

• Christopher Holmes

• Christopher Kingsbury

• Christoph Kutzinski

• Coda Hale

• Collin Van Dyck

• Csaba Palfi

• Dale Wijnand

• Damian Pawlowski

• Dan Everton

• Dan McWeeney

• Dang Nguyen Anh Khoa

• Daniel Temme

• Darren Yin

• David Illsley

• David Martin

• David Morgantini

• David Stendardi

• Dennis Hoersch

• Denny Abraham Cheriyan

• Deepu Mohan Puthrote

• Derek Cicerone

• Derek Stainer

• Devin Breen

• Devin Smith

• Dheerendra Rathor

• Dietrich Featherston

• Dimitris Zavaliadis

• Dmitry Minkovsky

• Dmitry Ustalov

4.1. Contributors 107

https://github.com/pimlottc
https://github.com/BCctierney
https://github.com/eiden
https://github.com/kutzi
https://github.com/christophercurrie
https://github.com/celkins
https://github.com/chrisgray
https://github.com/chrisholmes
https://github.com/ckingsbu
https://github.com/kutzi
https://github.com/codahale
https://github.com/collinvandyck
https://github.com/csabapalfi
https://github.com/dwijnand
https://github.com/profes
https://github.com/deverton
https://github.com/mcdan
https://github.com/wakandan
https://github.com/dmt
https://github.com/dareonion
https://github.com/davidillsley
https://github.com/dmartinpro
https://github.com/dmorgantini
https://github.com/dstendardi
https://github.com/dhs3000
https://github.com/dennyac
https://github.com/warfox
https://github.com/derekcicerone
https://github.com/dstainer
https://github.com/ometa
https://github.com/devinrsmith
https://github.com/DheerendraRathor
https://github.com/d2fn
https://github.com/dimzava
https://github.com/dminkovsky
https://github.com/dustalov

Dropwizard Documentation, Release @project.version@

• Dominic Tootell

• Drew Stephens

• Doug Roccato

• douzzi

• Dom Farr

• Dylan Scott

• eepstein

• eitan101

• Ellis Pritchard

• Emeka Mosanya

• Eric Tschetter

• Evan Jones

• Evan Meagher

• Farid Zakaria

• Felix Braun

• FleaflickerLLC

• florinn

• Fredrik Sundberg

• Frode Nerbråten

• Gabe Henkes

• Gary Dusbabek

• Glenn McAllister

• Graham O’Regan

• Greg Bowyer

• Gunnar Ahlberg

• Hal Hildebrand

• Henrik Stråth

• Hrvoje Slaviček

• Håkan Jonson

• Hrvoje Slaviček

• Ian Eure

• Ilias Bartolini

• Jacek Jackowiak

• Jake Swenson

• James Morris

• James Ward

108 Chapter 4. About Dropwizard

https://github.com/tootedom
https://github.com/dinomite
https://github.com/roccato
https://github.com/douzzi
https://github.com/dominicfarr
https://github.com/dylanscott
https://github.com/eepstein
https://github.com/eitan101
https://github.com/ellispritchard
https://github.com/emeka
https://github.com/metamx
https://github.com/evanj
https://github.com/evnm
https://github.com/fzakaria
https://github.com/fexbraun
https://github.com/FleaflickerLLC
https://github.com/florinn
https://github.com/KingBuzzer
https://github.com/froden
https://github.com/ghenkes
https://github.com/gdusbabek
https://github.com/glennmcallister
https://github.com/grahamoregan
https://github.com/GregBowyer
https://github.com/gunnarahlberg
https://github.com/Hellblazer
https://github.com/minisu
https://github.com/slavus
https://github.com/hawkan
https://github.com/slavus
https://github.com/ieure
https://github.com/iliasbartolini
https://github.com/airborn
https://github.com/jakeswenson
https://github.com/RawToast
https://github.com/jamesward

Dropwizard Documentation, Release @project.version@

• Jamie Furnaghan

• Jan Galinski

• Jan Olaf Krems

• Jan-Terje Sørensen

• Jared Stehler

• Jason Clawson

• Jason Dunkelberger

• Jason Toffaletti

• Javier Campanini

• Jeff Klukas

• Jerry-Carter

• Jesse Hodges

• Jilles Oldenbeuving

• Jochen Schalanda

• Joe Lauer

• Joe Schmetzer

• Johan Wirde (@jwirde)

• Jon Radon

• Jonathan Halterman

• Jonathan Ruckwood

• Jonathan Welzel

• Jon Radon

• Jordan Zimmerman

• Joshua Spiewak

• Julien

• Justin Miller

• Justin Plock

• Justin Rudd

• Kashyap Paidimarri

• Kerry Kimbrough

• Kilemensi

• Kirill Vlasov

• Konstantin Yegupov

• Kristian Klette

• Krzysztof Mejka

• kschjeld

4.1. Contributors 109

https://github.com/reines
https://github.com/jangalinski
https://github.com/jkrems
https://github.com/jansoren
https://github.com/jaredstehler-cengage
https://github.com/jclawson
https://github.com/dirkraft
https://github.com/toffaletti
https://github.com/jmcampanini
https://github.com/jklukas
https://github.com/Jerry-Carter
https://github.com/gjesse
https://github.com/ojilles
https://github.com/joschi
https://github.com/jjlauer
https://github.com/tumbarumba
https://github.com/wirde
https://github.com/JonMR
https://github.com/jhalterman
https://github.com/jon-ruckwood
https://github.com/jnwelzel
https://github.com/JonMR
https://github.com/Randgalt
https://github.com/jspiewak
https://github.com/neurodesign
https://github.com/justinrmiller
https://github.com/jplock
https://github.com/seagecko
https://github.com/kashyapp
https://github.com/kerrykimbrough
https://github.com/kilemensi
https://github.com/kirill-vlasov
https://github.com/KonstantinYegupov
https://github.com/klette
https://github.com/kmejka
https://github.com/kschjeld

Dropwizard Documentation, Release @project.version@

• LeekAnarchism

• lehcim

• Lucas

• Lunfu Zhong

• mabuthraa

• maffe

• Malte S. Stretz

• Manabu Matsuzaki

• Marcin Biegan

• Marcus Höjvall

• Marius Volkhart

• Mark Reddy

• Mark Wolfe

• markez92

• Mårten Gustafson

• Martin W. Kirst

• Matt Brown

• Matt Carrier

• Matt Hurne

• Matt Nelson

• Matt Thomson

• Matt Veitas

• Matt Whipple

• Matthew Clarke

• Max Wenzin

• Maximilien Marie

• Michael Chaten

• Michael Fairley

• Michael Kearns

• Michael McCarthy

• Michael Piefel

• Michal Rutkowski

• Mikael Amborn

• Mike Miller

• mnrasul

• Moritz Kammerer

110 Chapter 4. About Dropwizard

https://github.com/LeekAnarchism
https://github.com/lehcim
https://github.com/derlucas
https://github.com/zhongl
https://github.com/mabuthraa
https://github.com/maffe
https://github.com/mss
https://github.com/matsumana
https://github.com/mabn
https://github.com/softarn
https://github.com/MariusVolkhart
https://github.com/markreddy
https://github.com/wolfeidau
https://github.com/markez92
https://github.com/chids
https://github.com/nitram509
https://github.com/mattnworb
https://github.com/mcarrierastonish
https://github.com/mhurne
https://github.com/mattnelson
https://github.com/matt-thomson
https://github.com/mveitas
https://github.com/mwhipple
https://github.com/mclarke47
https://github.com/betrcode
https://github.com/akraxx
https://github.com/chaten
https://github.com/michaelfairley
https://github.com/LeekAnarchism
https://github.com/mikeycmccarthy
https://github.com/piefel
https://github.com/velocipedist
https://github.com/MikaelAmborn
https://github.com/mikemil
https://github.com/mnrasul
https://github.com/phxql

Dropwizard Documentation, Release @project.version@

• Mårten Gustafson

• natnan

• Nick Babcock

• Nick Telford

• Nikhil Bafna

• Nisarg Shah

• Oddmar Sandvik

• Oliver B. Fischer

• Oliver Charlesworth

• Olivier Abdesselam

• Ori Schwartz

• Otto Jongerius

• Owen Jacobson

• pandaadb

• Patrick Stegmann

• Patryk Najda

• Paul Samsotha

• Paul Tomlin

• Philip K. Warren

• Philip Potter

• Punyashloka Biswal

• Qinfeng Chen

• Quoc-Viet Nguyen

• Rachel Newstead

• rayokota

• Rémi Alvergnat

• Richard Kettelerij

• Richard Nyström

• Robert Barbey

• Rüdiger zu Dohna

• Ryan Berdeen

• Ryan Kennedy

• Saad Mufti

• Sam Perman

• Sam Quigley

• Scott Askew

4.1. Contributors 111

https://github.com/chids
https://github.com/natnan
https://github.com/nickbabcock
https://github.com/nicktelford
https://github.com/zodvik
https://github.com/nisargshah95
https://github.com/oddmar
https://github.com/obfischer
https://github.com/choliver
https://github.com/yazgoo
https://github.com/orischwartz
https://github.com/ojongerius
https://github.com/ojacobson
https://github.com/pandaadb
https://github.com/wonderb0lt
https://github.com/patrox
https://github.com/psamsotha
https://github.com/ptomli
https://github.com/pkwarren
https://github.com/philandstuff
https://github.com/punya
https://github.com/qinfchen
https://github.com/nqv
https://github.com/rnewstead1
https://github.com/rayokota
https://github.com/Toilal
https://github.com/rkettelerij
https://github.com/ricn
https://github.com/rbarbey
https://github.com/t1
https://github.com/also
https://github.com/ryankennedy
https://github.com/saadmufti
https://github.com/samperman
https://github.com/emerose
https://github.com/scottfromsf

Dropwizard Documentation, Release @project.version@

• Scott D.

• Scott Horn

• Sean Scanlon

• Sebastian Hartte

• Simon Collins

• smolloy

• Sourav Mitra

• Stan Svec

• Stephen Huenneke

• Steve Agalloco

• Steve Hill

• Stevo Slavić

• Stuart Gunter

• Szymon Pacanowski

• Tatu Saloranta

• Ted Nyman

• Thiago Moretto

• Thomas Darimont

• Tim Bart

• Tom Akehurst

• Tom Crayford

• Tom Lee

• Tom Morris

• Tom Shen

• Tony Gaetani

• Tristan Burch

• Tyrone Cutajar

• Vadim Spivak

• Varun Loiwal

• Vasyl Vavrychuk

• Vidit Drolia

• Vitor Reis

• Vojtěch Vondra

• vzx

• Wank Sinatra

• William Herbert

112 Chapter 4. About Dropwizard

https://github.com/isaki-x
https://github.com/sjhorn
https://github.com/sps
https://github.com/shartte
https://github.com/simoncollins
https://github.com/smolloy
https://github.com/souravmitra
https://github.com/StanSvec
https://github.com/skastel
https://github.com/stve
https://github.com/sghill
https://github.com/sslavic
https://github.com/stuartgunter
https://github.com/spacanowski
https://github.com/cowtowncoder
https://github.com/tnm
https://github.com/thiagomoretto
https://github.com/thomasdarimont
https://github.com/pims
https://github.com/tomakehurst
https://github.com/tcrayford
https://github.com/thomaslee
https://github.com/tommorris
https://github.com/tomshen
https://github.com/tonygaetani
https://github.com/tburch
https://github.com/tjcutajar
https://github.com/vadims
https://github.com/varunl
https://github.com/vvavrychuk
https://github.com/vdrolia
https://github.com/vitorreis
https://github.com/vvondra
https://github.com/vzx
https://github.com/ieure
https://github.com/WilliamHerbert

Dropwizard Documentation, Release @project.version@

• Xavier Shay

• Xiaodong-Xie

• Yiwei Gao

• Yun Zhi Lin

4.2 Sponsors

Dropwizard is generously supported by some companies with licenses and free accounts for their products.

4.2.1 JetBrains

JetBrains supports our open source project by sponsoring some All Products Packs within their Free Open Source
License program.

4.3 Frequently Asked Questions

What’s a Dropwizard? A character in a K.C. Green web comic.

How is Dropwizard licensed? It’s licensed under the Apache License v2.

How can I commit to Dropwizard? Go to the GitHub project, fork it, and submit a pull request. We prefer small,
single-purpose pull requests over large, multi-purpose ones. We reserve the right to turn down any proposed
changes, but in general we’re delighted when people want to make our projects better!

4.4 Release Notes

4.4.1 v1.0.6 Jan 30 2017

• Switch cert and peer validation to false by default #1855

• Add a JUnit rule for testing database interactions #1905

4.4.2 v1.0.5 Nov 18 2016

• Fix request logs with request parameter in layout pattern #1828

4.2. Sponsors 113

https://github.com/xaviershay
https://github.com/xiaodong-xie
https://github.com/yiweig
https://github.com/yunspace
https://www.jetbrains.com/
https://www.jetbrains.com/products.html
https://www.jetbrains.com/buy/opensource/
https://www.jetbrains.com/buy/opensource/
http://gunshowcomic.com/316
http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/dropwizard/dropwizard
https://github.com/dropwizard/dropwizard/pull/1855
https://github.com/dropwizard/dropwizard/pull/1905
https://github.com/dropwizard/dropwizard/pull/1828

Dropwizard Documentation, Release @project.version@

4.4.3 v1.0.4 Nov 14 2016

• Upgraded to Jersey 2.23.2 #1808

• Brought back support for request logging with logback-classic #1813

4.4.4 v1.0.3: Oct 28 2016

• Fix support maxFileSize and archivedFileCount #1660

• Upgraded to Jackson 2.7.8 #1755

• Upgraded to Mustache 0.9.4 #1766

• Prefer use of assertj’s java8 exception assertions #1753

4.4.5 v1.0.2: Sep 23 2016

• Fix absence of request logs in Dropwizard 1.0.1 #1737

4.4.6 v1.0.1: Sep 21 2016

• Allow use of custom HostnameVerifier on clients #1664

• Allow to configure failing on unknown properties in the Dropwizard configuration #1677

• Fix request attribute-related race condition in Logback request logging #1678

• Log Jetty initialized SSLContext not the Default #1698

• Fix NPE of non-resource sub-resource methods #1718

4.4.7 v1.0.0: Jul 26 2016

• Using Java 8 as baseline

• dropwizard-java8 bundle merged into mainline #1365

• HTTP/2 and server push support #1349

• dropwizard-spdy module is removed in favor of dropwizard-http2 #1330

• Switching to logback-access for HTTP request logging #1415

• Support for validating return values in JAX-RS resources #1251

• Consistent handling null entities in JAX-RS resources #1251

• Support for validating bean members in JAX-RS resources #1572

• Returning an HTTP 500 error for entities that can’t be serialized #1347

• Support serialisation of lazy loaded POJOs in Hibernate #1466

• Support fallback to the toString method during deserializing enum values from JSON #1340

• Support for setting default headers in Apache HTTP client #1354

• Printing help once on invalid command line arguments #1376

• Support for case insensitive and all single letter SizeUnit suffixes #1380

114 Chapter 4. About Dropwizard

https://github.com/dropwizard/dropwizard/pull/1808
https://github.com/dropwizard/dropwizard/pull/1813
https://github.com/dropwizard/dropwizard/pull/1660
https://github.com/dropwizard/dropwizard/pull/1755
https://github.com/dropwizard/dropwizard/pull/1766
https://github.com/dropwizard/dropwizard/pull/1753
https://github.com/dropwizard/dropwizard/pull/1737
https://github.com/dropwizard/dropwizard/pull/1664
https://github.com/dropwizard/dropwizard/pull/1677
https://github.com/dropwizard/dropwizard/pull/1678
https://github.com/dropwizard/dropwizard/pull/1698
https://github.com/dropwizard/dropwizard/pull/1718
https://github.com/dropwizard/dropwizard/issues/1365
https://github.com/dropwizard/dropwizard/issues/1349
https://github.com/dropwizard/dropwizard/pull/1330
https://github.com/dropwizard/dropwizard/pull/1415
https://github.com/dropwizard/dropwizard/pull/1251
https://github.com/dropwizard/dropwizard/pull/1251
https://github.com/dropwizard/dropwizard/pull/1572
https://github.com/dropwizard/dropwizard/pull/1347
https://github.com/dropwizard/dropwizard/pull/1466
https://github.com/dropwizard/dropwizard/pull/1340
https://github.com/dropwizard/dropwizard/pull/1354
https://github.com/dropwizard/dropwizard/pull/1376
https://github.com/dropwizard/dropwizard/pull/1380

Dropwizard Documentation, Release @project.version@

• Added a development profile to the build #1364

• All the default exception mappers in ResourceTestRule are registered by default #1387

• Allow DB minSize and initialSize to be zero for lazy connections #1517

• Ability to provide own RequestLogFactory #1290

• Support for authentication by polymorphic principals #1392

• Support for configuring Jetty’s inheritedChannel option #1410

• Support for using DropwizardAppRule at the suite level #1411

• Support for adding multiple MigrationBundles #1430

• Support for obtaining server context paths in the Application.run method #1503

• Support for unlimited log files for file appender #1549

• Support for log file names determined by logging policy #1561

• Default Graphite reporter port changed from 8080 to 2003 #1538

• Upgraded to Apache HTTP Client 4.5.2

• Upgraded to argparse4j 0.7.0

• Upgraded to Guava 19.0

• Upgraded to H2 1.4.192

• Upgraded to Hibernate 5.1.0 #1429

• Upgraded to Hibernate Validator 5.2.4.Final

• Upgraded to HSQLDB 2.3.4

• Upgraded to Jadira Usertype Core 5.0.0.GA

• Upgraded to Jackson 2.7.6

• Upgraded to JDBI 2.73 #1358

• Upgraded to Jersey 2.23.1

• Upgraded to Jetty 9.3.9.v20160517 #1330

• Upgraded to JMH 1.12

• Upgraded to Joda-Time 2.9.4

• Upgraded to Liquibase 3.5.1

• Upgraded to liquibase-slf4j 2.0.0

• Upgraded to Logback 1.1.7

• Upgraded to Mustache 0.9.2

• Upgraded to SLF4J 1.7.21

• Upgraded to tomcat-jdbc 8.5.3

• Upgraded to Objenesis 2.3

• Upgraded to AssertJ 3.4.1

• Upgraded to Mockito 2.0.54-beta

4.4. Release Notes 115

https://github.com/dropwizard/dropwizard/issues/1364
https://github.com/dropwizard/dropwizard/pull/1387
https://github.com/dropwizard/dropwizard/pull/1517
https://github.com/dropwizard/dropwizard/pull/1290
https://github.com/dropwizard/dropwizard/pull/1392
https://github.com/dropwizard/dropwizard/pull/1410
https://github.com/dropwizard/dropwizard/pull/1411
https://github.com/dropwizard/dropwizard/pull/1430
https://github.com/dropwizard/dropwizard/pull/1503
https://github.com/dropwizard/dropwizard/pull/1549
https://github.com/dropwizard/dropwizard/pull/1561
https://github.com/dropwizard/dropwizard/pull/1538
https://github.com/dropwizard/dropwizard/pull/1429
https://github.com/dropwizard/dropwizard/pull/1358
https://github.com/dropwizard/dropwizard/pull/1330

Dropwizard Documentation, Release @project.version@

4.4.8 v0.9.2: Jan 20 2016

• Support @UnitOfWork annotation outside of Jersey resources #1361

4.4.9 v0.9.1: Nov 3 2015

• Add ConfigurationSourceProvider for reading resources from classpath #1314

• Add @UnwrapValidatedValue annotation to BaseReporterFactory.frequency #1308, #1309

• Fix serialization of default configuration for DataSourceFactory by deprecat-
ing PooledDataSourceFactory#getHealthCheckValidationQuery() and
PooledDataSourceFactory#getHealthCheckValidationTimeout() #1321, #1322

• Treat null values in JAX-RS resource method parameters of type Optional<T> as absent value after con-
version #1323

4.4.10 v0.9.0: Oct 28 2015

• Various documentation fixes and improvements

• New filter-based authorization & authentication #952, #1023, #1114, #1162, #1241

• Fixed a security bug in CachingAuthenticator with caching results of failed authentication attempts
#1082

• Correct handling misconfigured context paths in ServerFactory #785

• Logging context paths during application startup #994, #1072

• Support for Jersey Bean Validation #842

• Returning descriptive constraint violation messages #1039,

• Trace logging of failed constraint violations #992

• Returning correct HTTP status codes for constraint violations #993

• Fixed possible XSS in constraint violations #892

• Support for including caller data in appenders #995

• Support for defining custom logging factories (e.g. native Logback) #996

• Support for defining the maximum log file size in FileAppenderFactory. #1000

• Support for fixed window rolling policy in FileAppenderFactory #1218

• Support for individual logger appenders #1092

• Support for disabling logger additivity #1215

• Sorting endpoints in the application startup log #1002

• Dynamic DNS resolution in the Graphite metric reporter #1004

• Support for defining a custom MetricRegistry during bootstrap (e.g. with HdrHistogram) #1015

• Support for defining a custom ObjectMapper during bootstrap. #1112

• Added facility to plug-in custom DB connection pools (e.g. HikariCP) #1030

• Support for setting a custom DB pool connection validator #1113

• Support for enabling of removing abandoned DB pool connections #1264

116 Chapter 4. About Dropwizard

https://github.com/dropwizard/dropwizard/issues/1361
https://github.com/dropwizard/dropwizard/issues/1314
https://github.com/dropwizard/dropwizard/issues/1308
https://github.com/dropwizard/dropwizard/issues/1309
https://github.com/dropwizard/dropwizard/issues/1321
https://github.com/dropwizard/dropwizard/pull/1322
https://github.com/dropwizard/dropwizard/pull/1323
https://github.com/dropwizard/dropwizard/pull/952
https://github.com/dropwizard/dropwizard/pull/1023
https://github.com/dropwizard/dropwizard/pull/1114
https://github.com/dropwizard/dropwizard/pull/1162
https://github.com/dropwizard/dropwizard/pull/1241
https://github.com/dropwizard/dropwizard/pull/1082
https://github.com/dropwizard/dropwizard/pull/785
https://github.com/dropwizard/dropwizard/pull/994
https://github.com/dropwizard/dropwizard/pull/1072
https://jersey.java.net/documentation/latest/bean-validation.html
https://github.com/dropwizard/dropwizard/pull/842
https://github.com/dropwizard/dropwizard/pull/1039
https://github.com/dropwizard/dropwizard/pull/992
https://github.com/dropwizard/dropwizard/pull/993
https://github.com/dropwizard/dropwizard/issues/892
https://github.com/dropwizard/dropwizard/pull/995
https://github.com/dropwizard/dropwizard/pull/996
https://github.com/dropwizard/dropwizard/pull/1000
https://github.com/dropwizard/dropwizard/pull/1218
https://github.com/dropwizard/dropwizard/pull/1092
https://github.com/dropwizard/dropwizard/pull/1215
https://github.com/dropwizard/dropwizard/pull/1002
https://github.com/dropwizard/dropwizard/pull/1004
https://github.com/dropwizard/dropwizard/pull/1015
https://github.com/dropwizard/dropwizard/pull/1112
https://github.com/dropwizard/dropwizard/pull/1030
https://github.com/dropwizard/dropwizard/pull/1113
https://github.com/dropwizard/dropwizard/pull/1264

Dropwizard Documentation, Release @project.version@

• Support for credentials in a DB data source URL #1260

• Support for simultaneous work of several Hibernate bundles #1276

• HTTP(S) proxy support for Dropwizard HTTP client #657

• Support external configuration of TLS properties for Dropwizard HTTP client #1224

• Support for not accepting GZIP-compressed responses in HTTP clients #1270

• Support for setting a custom redirect strategy in HTTP clients #1281

• Apache and Jersey clients are now managed by the application environment #1061

• Support for request-scoped configuration for Jersey client #939

• Respecting Jackson feature for deserializing enums using toString #1104

• Support for passing explicit Configuration via test rules #1131

• On view template error, return a generic error page instead of template not found #1178

• In some cases an instance of Jersey HTTP client could be abruptly closed during the application lifetime #1232

• Improved build time build by running tests in parallel #1032

• Added JMH benchmarks #990

• Allow customization of Hibernate SessionFactory #1182

• Removed javax.el-2.x in favour of javax.el-3.0

• Upgraded to argparse4j 0.6.0

• Upgrade to AssertJ 2.2.0

• Upgraded to JDBI 2.63.1

• Upgraded to Apache HTTP Client 4.5.1

• Upgraded to Dropwizard Metrics 3.1.2

• Upgraded to Freemarker 2.3.23

• Upgraded to H2 1.4.190

• Upgraded to Hibernate 4.3.11.Final

• Upgraded to Jackson 2.6.3

• Upgraded to Jadira Usertype Core 4.0.0.GA

• Upgraded to Jersey 2.22.1

• Upgraded to Jetty 9.2.13.v20150730

• Upgraded to Joda-Time 2.9

• Upgraded to JSR305 annotations 3.0.1

• Upgraded to Hibernate Validator 5.2.2.Final

• Upgraded to Jetty ALPN boot 7.1.3.v20150130

• Upgraded to Jetty SetUID support 1.0.3

• Upgraded to Liquibase 3.4.1

• Upgraded to Logback 1.1.3

• Upgraded to Metrics 3.1.2

4.4. Release Notes 117

https://github.com/dropwizard/dropwizard/pull/1260
https://github.com/dropwizard/dropwizard/pull/1276
https://github.com/dropwizard/dropwizard/pull/657
https://github.com/dropwizard/dropwizard/pull/1224
https://github.com/dropwizard/dropwizard/pull/1270
https://github.com/dropwizard/dropwizard/pull/1281
https://github.com/dropwizard/dropwizard/pull/1061
https://github.com/dropwizard/dropwizard/pull/939
https://github.com/dropwizard/dropwizard/pull/1104
https://github.com/dropwizard/dropwizard/pull/1131
https://github.com/dropwizard/dropwizard/pull/1178
https://github.com/dropwizard/dropwizard/pull/1232
https://github.com/dropwizard/dropwizard/pull/1032
https://github.com/dropwizard/dropwizard/pull/990
https://github.com/dropwizard/dropwizard/issue/1182

Dropwizard Documentation, Release @project.version@

• Upgraded to Mockito 1.10.19

• Upgraded to SLF4J 1.7.12

• Upgraded to commons-lang3 3.4

• Upgraded to tomcat-jdbc 8.0.28

4.4.11 v0.8.5: Nov 3 2015

• Treat null values in JAX-RS resource method parameters of type Optional<T> as absent value after con-
version #1323

4.4.12 v0.8.4: Aug 26 2015

• Upgrade to Apache HTTP Client 4.5

• Upgrade to Jersey 2.21

• Fixed user-agent shadowing in Jersey HTTP Client #1198

4.4.13 v0.8.3: Aug 24 2015

• Fixed an issue with closing the HTTP client connection pool after a full GC #1160

4.4.14 v0.8.2: Jul 6 2015

• Support for request-scoped configuration for Jersey client #1137

• Upgraded to Jersey 2.19 #1143

4.4.15 v0.8.1: Apr 7 2015

• Fixed transaction committing lifecycle for @UnitOfWork (#850, #915)

• Fixed noisy Logback messages on startup (#902)

• Ability to use providers in TestRule, allows testing of auth & views (#513, #922)

• Custom ExceptionMapper not invoked when Hibernate rollback (#949)

• Support for setting a time bound on DBI and Hibernate health checks

• Default configuration for views

• Ensure that JerseyRequest scoped ClientConfig gets propagated to HttpUriRequest

• More example tests

• Fixed security issue where info is leaked during validation of unauthenticated resources(#768)

118 Chapter 4. About Dropwizard

https://github.com/dropwizard/dropwizard/pull/1323
https://github.com/dropwizard/dropwizard/pull/1198
https://github.com/dropwizard/dropwizard/pull/1160
https://github.com/dropwizard/dropwizard/pull/1137
https://github.com/dropwizard/dropwizard/pull/1143

Dropwizard Documentation, Release @project.version@

4.4.16 v0.8.0: Mar 5 2015

• Migrated dropwizard-spdy from NPN to ALPN

• Dropped support for deprecated SPDY/2 in dropwizard-spdy

• Upgrade to argparse4j 0.4.4

• Upgrade to commons-lang3 3.3.2

• Upgrade to Guava 18.0

• Upgrade to H2 1.4.185

• Upgrade to Hibernate 4.3.5.Final

• Upgrade to Hibernate Validator 5.1.3.Final

• Upgrade to Jackson 2.5.1

• Upgrade to JDBI 2.59

• Upgrade to Jersey 2.16

• Upgrade to Jetty 9.2.9.v20150224

• Upgrade to Joda-Time 2.7

• Upgrade to Liquibase 3.3.2

• Upgrade to Mustache 0.8.16

• Upgrade to SLF4J 1.7.10

• Upgrade to tomcat-jdbc 8.0.18

• Upgrade to JSR305 annotations 3.0.0

• Upgrade to Junit 4.12

• Upgrade to AssertJ 1.7.1

• Upgrade to Mockito 1.10.17

• Support for range headers

• Ability to use Apache client configuration for Jersey client

• Warning when maximum pool size and unbounded queues are combined

• Fixed connection leak in CloseableLiquibase

• Support ScheduledExecutorService with daemon thread

• Improved DropwizardAppRule

• Better connection pool metrics

• Removed final modifier from Application#run

• Fixed gzip encoding to support Jersey 2.x

• Configuration to toggle regex [in/ex]clusion for Metrics

• Configuration to disable default exception mappers

• Configuration support for disabling chunked encoding

• Documentation fixes and upgrades

4.4. Release Notes 119

Dropwizard Documentation, Release @project.version@

4.4.17 v0.7.1: Jun 18 2014

• Added instrumentation to Task, using metrics annotations.

• Added ability to blacklist SSL cipher suites.

• Added @PATCH annotation for Jersey resource methods to indicate use of the HTTP PATCH method.

• Added support for configurable request retry behavior for HttpClientBuilder and
JerseyClientBuilder.

• Added facility to get the admin HTTP port in DropwizardAppTestRule.

• Added ScanningHibernateBundle, which scans packages for entities, instead of requiring you to add
them individually.

• Added facility to invalidate credentials from the CachingAuthenticator that match a specified
Predicate.

• Added a CI build profile for JDK 8 to ensure that Dropwizard builds against the latest version of the JDK.

• Added --catalog and --schema options to Liquibase.

• Added stackTracePrefix configuration option to SyslogAppenderFactory to configure the pattern
prepended to each line in the stack-trace sent to syslog. Defaults to the TAB character, “t”. Note: this is different
from the bang prepended to text logs (such as “console”, and “file”), as syslog has different conventions for
multi-line messages.

• Added ability to validate Optional values using validation annotations. Such values require the
@UnwrapValidatedValue annotation, in addition to the validations you wish to use.

• Added facility to configure the User-Agent for HttpClient. Configurable via the userAgent configu-
ration option.

• Added configurable AllowedMethodsFilter. Configure allowed HTTP methods for both the application
and admin connectors with allowedMethods.

• Added support for specifying a CredentialProvider for HTTP clients.

• Fixed silently overriding Servlets or ServletFilters; registering a duplicate will now emit a warning.

• Fixed SyslogAppenderFactory failing when the application name contains a PCRE reserved character
(e.g. / or $).

• Fixed regression causing JMX reporting of metrics to not be enabled by default.

• Fixed transitive dependencies on log4j and extraneous sl4j backends bleeding in to projects. Dropwizard will
now enforce that only Logback and slf4j-logback are used everywhere.

• Fixed clients disconnecting before the request has been fully received causing a “500 Internal Server Error”
to be generated for the request log. Such situations will now correctly generate a “400 Bad Request”, as the
request is malformed. Clients will never see these responses, but they matter for logging and metrics that were
previously considering this situation as a server error.

• Fixed DiscoverableSubtypeResolver using the system ClassLoader, instead of the local one.

• Fixed regression causing Liquibase --dump to fail to dump the database.

• Fixed the CSV metrics reporter failing when the output directory doesn’t exist. It will now attempt to create the
directory on startup.

• Fixed global frequency for metrics reporters being permanently overridden by the default frequency for individ-
ual reporters.

• Fixed tests failing on Windows due to platform-specific line separators.

120 Chapter 4. About Dropwizard

Dropwizard Documentation, Release @project.version@

• Changed DropwizardAppTestRule so that it no longer requires a configuration path to operate. When no
path is specified, it will now use the applications’ default configuration.

• Changed Bootstrap so that getMetricsFactory()may now be overridden to provide a custom instance
to the framework to use.

• Upgraded to Guava 17.0 Note: this addresses a bug with BloomFilters that is incompatible with pre-17.0 Bloom-
Filters.

• Upgraded to Jackson 2.3.3

• Upgraded to Apache HttpClient 4.3.4

• Upgraded to Metrics 3.0.2

• Upgraded to Logback 1.1.2

• Upgraded to h2 1.4.178

• Upgraded to JDBI 2.55

• Upgraded to Hibernate 4.3.5 Final

• Upgraded to Hibernate Validator 5.1.1 Final

• Upgraded to Mustache 0.8.15

4.4.18 v0.7.0: Apr 04 2014

• Upgraded to Java 7.

• Moved to the io.dropwizard group ID and namespace.

• Extracted out a number of reusable libraries: dropwizard-configuration, dropwizard-jackson,
dropwizard-jersey, dropwizard-jetty, dropwizard-lifecycle, dropwizard-logging,
dropwizard-servlets, dropwizard-util, dropwizard-validation.

• Extracted out various elements of Environment to separate classes: JerseyEnvironment,
LifecycleEnvironment, etc.

• Extracted out dropwizard-views-freemarker and dropwizard-views-mustache.
dropwizard-views just provides infrastructure now.

• Renamed Service to Application.

• Added dropwizard-forms, which provides support for multipart MIME entities.

• Added dropwizard-spdy.

• Added AppenderFactory, allowing for arbitrary logging appenders for application and request logs.

• Added ConnectorFactory, allowing for arbitrary Jetty connectors.

• Added ServerFactory, with multi- and single-connector implementations.

• Added ReporterFactory, for metrics reporters, with Graphite and Ganglia implementations.

• Added ConfigurationSourceProvider to allow loading configuration files from sources other than the
filesystem.

• Added setuid support. Configure the user/group to run as and soft/hard open file limits in the ServerFactory.
To bind to privileged ports (e.g. 80), enable startsAsRoot and set user and group, then start your
application as the root user.

• Added builders for managed executors.

4.4. Release Notes 121

Dropwizard Documentation, Release @project.version@

• Added a default check command, which loads and validates the service configuration.

• Added support for the Jersey HTTP client to dropwizard-client.

• Added Jackson Afterburner support.

• Added support for deflate-encoded requests and responses.

• Added support for HTTP Sessions. Add the annotated parameter to your resource method: @Session
HttpSession session to have the session context injected.

• Added support for a “flash” message to be propagated across requests. Add the annotated parameter to your
resource method: @Session Flash message to have any existing flash message injected.

• Added support for deserializing Java enums with fuzzy matching rules (i.e., whitespace stripping, -/_ equiva-
lence, case insensitivity, etc.).

• Added HibernateBundle#configure(Configuration) for customization of Hibernate configura-
tion.

• Added support for Joda Time DateTime arguments and results when using JDBI.

• Added configuration option to include Exception stack-traces when logging to syslog. Stack traces are now
excluded by default.

• Added the application name and PID (if detectable) to the beginning of syslog messages, as is the convention.

• Added --migrations command-line option to migrate command to supply the migrations file explicitly.

• Validation errors are now returned as application/json responses.

• Simplified AsyncRequestLog; now standardized on Jetty 9 NCSA format.

• Renamed DatabaseConfiguration to DataSourceFactory, and ConfigurationStrategy to
DatabaseConfiguration.

• Changed logging to be asynchronous. Messages are now buffered and batched in-memory before being delivered
to the configured appender(s).

• Changed handling of runtime configuration errors. Will no longer display an Exception stack-trace and will
present a more useful description of the problem, including suggestions when appropriate.

• Changed error handling to depend more heavily on Jersey exception mapping.

• Changed dropwizard-db to use tomcat-jdbc instead of tomcat-dbcp.

• Changed default formatting when logging nested Exceptions to display the root-cause first.

• Replaced ResourceTest with ResourceTestRule, a JUnit TestRule.

• Dropped Scala support.

• Dropped ManagedSessionFactory.

• Dropped ObjectMapperFactory; use ObjectMapper instead.

• Dropped Validator; use javax.validation.Validator instead.

• Fixed a shutdown bug in dropwizard-migrations.

• Fixed formatting of “Caused by” lines not being prefixed when logging nested Exceptions.

• Fixed not all available Jersey endpoints were being logged at startup.

• Upgraded to argparse4j 0.4.3.

• Upgraded to Guava 16.0.1.

• Upgraded to Hibernate Validator 5.0.2.

122 Chapter 4. About Dropwizard

Dropwizard Documentation, Release @project.version@

• Upgraded to Jackson 2.3.1.

• Upgraded to JDBI 2.53.

• Upgraded to Jetty 9.0.7.

• Upgraded to Liquibase 3.1.1.

• Upgraded to Logback 1.1.1.

• Upgraded to Metrics 3.0.1.

• Upgraded to Mustache 0.8.14.

• Upgraded to SLF4J 1.7.6.

• Upgraded to Jersey 1.18.

• Upgraded to Apache HttpClient 4.3.2.

• Upgraded to tomcat-jdbc 7.0.50.

• Upgraded to Hibernate 4.3.1.Final.

4.4.19 v0.6.2: Mar 18 2013

• Added support for non-UTF8 views.

• Fixed an NPE for services in the root package.

• Fixed exception handling in TaskServlet.

• Upgraded to Slf4j 1.7.4.

• Upgraded to Jetty 8.1.10.

• Upgraded to Jersey 1.17.1.

• Upgraded to Jackson 2.1.4.

• Upgraded to Logback 1.0.10.

• Upgraded to Hibernate 4.1.9.

• Upgraded to Hibernate Validator 4.3.1.

• Upgraded to tomcat-dbcp 7.0.37.

• Upgraded to Mustache.java 0.8.10.

• Upgraded to Apache HttpClient 4.2.3.

• Upgraded to Jackson 2.1.3.

• Upgraded to argparse4j 0.4.0.

• Upgraded to Guava 14.0.1.

• Upgraded to Joda Time 2.2.

• Added retries to HttpClientConfiguration.

• Fixed log formatting for extended stack traces, also now using extended stack traces as the default.

• Upgraded to FEST Assert 2.0M10.

4.4. Release Notes 123

Dropwizard Documentation, Release @project.version@

4.4.20 v0.6.1: Nov 28 2012

• Fixed incorrect latencies in request logs on Linux.

• Added ability to register multiple ServerLifecycleListener instances.

4.4.21 v0.6.0: Nov 26 2012

• Added Hibernate support in dropwizard-hibernate.

• Added Liquibase migrations in dropwizard-migrations.

• Renamed http.acceptorThreadCount to http.acceptorThreads.

• Renamed ssl.keyStorePath to ssl.keyStore.

• Dropped JerseyClient. Use Jersey’s Client class instead.

• Moved JDBI support to dropwizard-jdbi.

• Dropped Database. Use JDBI’s DBI class instead.

• Dropped the Json class. Use ObjectMapperFactory and ObjectMapper instead.

• Decoupled JDBI support from tomcat-dbcp.

• Added group support to Validator.

• Moved CLI support to argparse4j.

• Fixed testing support for Optional resource method parameters.

• Fixed Freemarker support to use its internal encoding map.

• Added property support to ResourceTest.

• Fixed JDBI metrics support for raw SQL queries.

• Dropped Hamcrest matchers in favor of FEST assertions in dropwizard-testing.

• Split Environment into Bootstrap and Environment, and broke configuration of each into Service’s
#initialize(Bootstrap) and #run(Configuration, Environment).

• Combined AbstractService and Service.

• Trimmed down ScalaService, so be sure to add ScalaBundle.

• Added support for using JerseyClientFactory without an Environment.

• Dropped Jerkson in favor of Jackson’s Scala module.

• Added Optional support for JDBI.

• Fixed bug in stopping AsyncRequestLog.

• Added UUIDParam.

• Upgraded to Metrics 2.2.0.

• Upgraded to Jetty 8.1.8.

• Upgraded to Mockito 1.9.5.

• Upgraded to tomcat-dbcp 7.0.33.

• Upgraded to Mustache 0.8.8.

• Upgraded to Jersey 1.15.

124 Chapter 4. About Dropwizard

Dropwizard Documentation, Release @project.version@

• Upgraded to Apache HttpClient 4.2.2.

• Upgraded to JDBI 2.41.

• Upgraded to Logback 1.0.7 and SLF4J 1.7.2.

• Upgraded to Guava 13.0.1.

• Upgraded to Jackson 2.1.1.

• Added support for Joda Time.

Note: Upgrading to 0.6.0 will require changing your code. First, your Service subclass will need to implement both
#initialize(Bootstrap<T>) and #run(T, Environment). What used to be in initialize should
be moved to run. Second, your representation classes need to be migrated to Jackson 2. For the most part, this
is just changing imports to com.fasterxml.jackson.annotation.*, but there are some subtler changes in
functionality. Finally, references to 0.5.x’s Json, JerseyClient, or JDBI classes should be changed to Jackon’s
ObjectMapper, Jersey’s Client, and JDBI’s DBI respectively.

4.4.22 v0.5.1: Aug 06 2012

• Fixed logging of managed objects.

• Fixed default file logging configuration.

• Added FEST-Assert as a dropwizard-testing dependency.

• Added support for Mustache templates (*.mustache) to dropwizard-views.

• Added support for arbitrary view renderers.

• Fixed command-line overrides when no configuration file is present.

• Added support for arbitrary DnsResolver implementations in HttpClientFactory.

• Upgraded to Guava 13.0 final.

• Fixed task path bugs.

• Upgraded to Metrics 2.1.3.

• Added JerseyClientConfiguration#compressRequestEntity for disabling the compression of
request entities.

• Added Environment#scanPackagesForResourcesAndProviders for automatically detecting Jer-
sey providers and resources.

• Added Environment#setSessionHandler.

4.4.23 v0.5.0: Jul 30 2012

• Upgraded to JDBI 2.38.1.

• Upgraded to Jackson 1.9.9.

• Upgraded to Jersey 1.13.

• Upgraded to Guava 13.0-rc2.

• Upgraded to HttpClient 4.2.1.

• Upgraded to tomcat-dbcp 7.0.29.

4.4. Release Notes 125

http://wiki.fasterxml.com/JacksonUpgradeFrom19To20
http://wiki.fasterxml.com/JacksonUpgradeFrom19To20

Dropwizard Documentation, Release @project.version@

• Upgraded to Jetty 8.1.5.

• Improved AssetServlet:

– More accurate Last-Modified-At timestamps.

– More general asset specification.

– Default filename is now configurable.

• Improved JacksonMessageBodyProvider:

– Now based on Jackson’s JAX-RS support.

– Doesn’t read or write types annotated with @JsonIgnoreType.

• Added @MinSize, @MaxSize, and @SizeRange validations.

• Added @MinDuration, @MaxDuration, and @DurationRange validations.

• Fixed race conditions in Logback initialization routines.

• Fixed TaskServlet problems with custom context paths.

• Added jersey-text-framework-core as an explicit dependency of dropwizard-testing. This
helps out some non-Maven build frameworks with bugs in dependency processing.

• Added addProvider to JerseyClientFactory.

• Fixed NullPointerException problems with anonymous health check classes.

• Added support for serializing/deserializing ByteBuffer instances as JSON.

• Added supportedProtocols to SSL configuration, and disabled SSLv2 by default.

• Added support for Optional<Integer> query parameters and others.

• Removed jersey-freemarker dependency from dropwizard-views.

• Fixed missing thread contexts in logging statements.

• Made the configuration file argument for the server command optional.

• Added support for disabling log rotation.

• Added support for arbitrary KeyStore types.

• Added Log.forThisClass().

• Made explicit service names optional.

4.4.24 v0.4.4: Jul 24 2012

• Added support for @JsonIgnoreType to JacksonMessageBodyProvider.

4.4.25 v0.4.3: Jun 22 2012

• Re-enable immediate flushing for file and console logging appenders.

126 Chapter 4. About Dropwizard

Dropwizard Documentation, Release @project.version@

4.4.26 v0.4.2: Jun 20 2012

• Fixed JsonProcessingExceptionMapper. Now returns human-readable error messages for malformed
or invalid JSON as a 400 Bad Request. Also handles problems with JSON generation and object mapping
in a developer-friendly way.

4.4.27 v0.4.1: Jun 19 2012

• Fixed type parameter resolution in for subclasses of subclasses of ConfiguredCommand.

• Upgraded to Jackson 1.9.7.

• Upgraded to Logback 1.0.6, with asynchronous logging.

• Upgraded to Hibernate Validator 4.3.0.

• Upgraded to JDBI 2.34.

• Upgraded to Jetty 8.1.4.

• Added logging.console.format, logging.file.format, and logging.syslog.format pa-
rameters for custom log formats.

• Extended ResourceTest to allow for enabling/disabling specific Jersey features.

• Made Configuration serializable as JSON.

• Stopped lumping command-line options in a group in Command.

• Fixed java.util.logging level changes.

• Upgraded to Apache HttpClient 4.2.

• Improved performance of AssetServlet.

• Added withBundle to ScalaService to enable bundle mix-ins.

• Upgraded to SLF4J 1.6.6.

• Enabled configuration-parameterized Jersey containers.

• Upgraded to Jackson Guava 1.9.1, with support for Optional.

• Fixed error message in AssetBundle.

• Fixed WebApplicationException``s being thrown by ``JerseyClient.

4.4.28 v0.4.0: May 1 2012

• Switched logging from Log4j to Logback.

– Deprecated Log#fatal methods.

– Deprecated Log4j usage.

– Removed Log4j JSON support.

– Switched file logging to a time-based rotation system with optional GZIP and ZIP compression.

– Replaced logging.file.filenamePattern with logging.file.currentLogFilename
and logging.file.archivedLogFilenamePattern.

– Replaced logging.file.retainedFileCount with logging.file.
archivedFileCount.

4.4. Release Notes 127

http://logging.apache.org/log4j/1.2/
http://logback.qos.ch/

Dropwizard Documentation, Release @project.version@

– Moved request logging to use a Logback-backed, time-based rotation system with optional GZIP and ZIP
compression. http.requestLog now has console, file, and syslog sections.

• Fixed validation errors for logging configuration.

• Added ResourceTest#addProvider(Class<?>).

• Added ETag and Last-Modified support to AssetServlet.

• Fixed off logging levels conflicting with YAML’s helpfulness.

• Improved Optional support for some JDBC drivers.

• Added ResourceTest#getJson().

• Upgraded to Jackson 1.9.6.

• Improved syslog logging.

• Fixed template paths for views.

• Upgraded to Guava 12.0.

• Added support for deserializing CacheBuilderSpec instances from JSON/YAML.

• Switched AssetsBundle and servlet to using cache builder specs.

• Switched CachingAuthenticator to using cache builder specs.

• Malformed JSON request entities now produce a 400 Bad Request instead of a 500 Server Error
response.

• Added connectionTimeout, maxConnectionsPerRoute, and keepAlive to
HttpClientConfiguration.

• Added support for using Guava’s HostAndPort in configuration properties.

• Upgraded to tomcat-dbcp 7.0.27.

• Upgraded to JDBI 2.33.2.

• Upgraded to HttpClient 4.1.3.

• Upgraded to Metrics 2.1.2.

• Upgraded to Jetty 8.1.3.

• Added SSL support.

4.4.29 v0.3.1: Mar 15 2012

• Fixed debug logging levels for Log.

4.4.30 v0.3.0: Mar 13 2012

• Upgraded to JDBI 2.31.3.

• Upgraded to Jackson 1.9.5.

• Upgraded to Jetty 8.1.2. (Jetty 9 is now the experimental branch. Jetty 8 is just Jetty 7 with Servlet 3.0 support.)

• Dropped dropwizard-templates and added dropwizard-views instead.

• Added AbstractParam#getMediaType().

• Fixed potential encoding bug in parsing YAML files.

128 Chapter 4. About Dropwizard

Dropwizard Documentation, Release @project.version@

• Fixed a NullPointerException when getting logging levels via JMX.

• Dropped support for @BearerToken and added dropwizard-auth instead.

• Added @CacheControl for resource methods.

• Added AbstractService#getJson() for full Jackson customization.

• Fixed formatting of configuration file parsing errors.

• ThreadNameFilter is now added by default. The thread names Jetty worker threads are set to the method
and URI of the HTTP request they are currently processing.

• Added command-line overriding of configuration parameters via system properties. For example, -Ddw.
http.port=8090 will override the configuration file to set http.port to 8090.

• Removed ManagedCommand. It was rarely used and confusing.

• If http.adminPort is the same as http.port, the admin servlet will be hosted under /admin. This
allows Dropwizard applications to be deployed to environments like Heroku, which require applications to open
a single port.

• Added http.adminUsername and http.adminPassword to allow for Basic HTTP Authentication for
the admin servlet.

• Upgraded to Metrics 2.1.1.

4.4.31 v0.2.1: Feb 24 2012

• Added logging.console.timeZone and logging.file.timeZone to control the time zone of the
timestamps in the logs. Defaults to UTC.

• Upgraded to Jetty 7.6.1.

• Upgraded to Jersey 1.12.

• Upgraded to Guava 11.0.2.

• Upgraded to SnakeYAML 1.10.

• Upgraded to tomcat-dbcp 7.0.26.

• Upgraded to Metrics 2.0.3.

4.4.32 v0.2.0: Feb 15 2012

• Switched to using jackson-datatype-guava for JSON serialization/deserialization of Guava types.

• Use InstrumentedQueuedThreadPool from metrics-jetty.

• Upgraded to Jackson 1.9.4.

• Upgraded to Jetty 7.6.0 final.

• Upgraded to tomcat-dbcp 7.0.25.

• Improved fool-proofing for Service vs. ScalaService.

• Switched to using Jackson for configuration file parsing. SnakeYAML is used to parse YAML configuration
files to a JSON intermediary form, then Jackson is used to map that to your Configuration subclass and its
fields. Configuration files which don’t end in .yaml or .yml are treated as JSON.

• Rewrote Json to no longer be a singleton.

4.4. Release Notes 129

http://metrics.codahale.com/about/release-notes/#v2-1-1-mar-13-2012

Dropwizard Documentation, Release @project.version@

• Converted JsonHelpers in dropwizard-testing to use normalized JSON strings to compare JSON.

• Collapsed DatabaseConfiguration. It’s no longer a map of connection names to configuration objects.

• Changed Database to use the validation query in DatabaseConfiguration for its #ping() method.

• Changed many HttpConfiguration defaults to match Jetty’s defaults.

• Upgraded to JDBI 2.31.2.

• Fixed JAR locations in the CLI usage screens.

• Upgraded to Metrics 2.0.2.

• Added support for all servlet listener types.

• Added Log#setLevel(Level).

• Added Service#getJerseyContainer, which allows services to fully customize the Jersey container
instance.

• Added the http.contextParameters configuration parameter.

4.4.33 v0.1.3: Jan 19 2012

• Upgraded to Guava 11.0.1.

• Fixed logging in ServerCommand. For the last time.

• Switched to using the instrumented connectors from metrics-jetty. This allows for much lower-level
metrics about your service, including whether or not your thread pools are overloaded.

• Added FindBugs to the build process.

• Added ResourceTest to dropwizard-testing, which uses the Jersey Test Framework to provide full
testing of resources.

• Upgraded to Jetty 7.6.0.RC4.

• Decoupled URIs and resource paths in AssetServlet and AssetsBundle.

• Added rootPath to Configuration. It allows you to serve Jersey assets off a specific path (e.g., /
resources/* vs /*).

• AssetServlet now looks for index.htm when handling requests for the root URI.

• Upgraded to Metrics 2.0.0-RC0.

4.4.34 v0.1.2: Jan 07 2012

• All Jersey resource methods annotated with @Timed, @Metered, or @ExceptionMetered are now instru-
mented via metrics-jersey.

• Now licensed under Apache License 2.0.

• Upgraded to Jetty 7.6.0.RC3.

• Upgraded to Metrics 2.0.0-BETA19.

• Fixed logging in ServerCommand.

• Made ServerCommand#run() non-final.

130 Chapter 4. About Dropwizard

Dropwizard Documentation, Release @project.version@

4.4.35 v0.1.1: Dec 28 2011

• Fixed ManagedCommand to provide access to the Environment, among other things.

• Made JerseyClient’s thread pool managed.

• Improved ease of use for Duration and Size configuration parameters.

• Upgraded to Mockito 1.9.0.

• Upgraded to Jetty 7.6.0.RC2.

• Removed single-arg constructors for ConfiguredCommand.

• Added Log, a simple front-end for logging.

4.4.36 v0.1.0: Dec 21 2011

• Initial release

4.5 Security

No known issues exist

4.6 Documentation TODOs

4.5. Security 131

Dropwizard Documentation, Release @project.version@

132 Chapter 4. About Dropwizard

CHAPTER 5

Other Versions

• 1.3.x

• 1.2.x

• 1.1.x

• 1.0.x

• 0.9.x

• 0.8.x

• 0.7.x

• 0.6.2

133

https://www.dropwizard.io/en/release-1.3.x/
https://www.dropwizard.io/en/release-1.2.x/
https://www.dropwizard.io/en/release-1.1.x/
https://www.dropwizard.io/en/release-1.0.x/
https://www.dropwizard.io/en/release-0.9.x/
https://www.dropwizard.io/en/release-0.8.x/
https://www.dropwizard.io/en/release-0.7.x/
http://dropwizard.github.io/dropwizard/0.6.2

	Getting Started
	User Manual
	Javadoc
	About Dropwizard
	Other Versions

