Dropwizard Documentation
Release 0.8.6

Coda Hale

Oct 06, 2019

Contents

Getting Started
User Manual
About Dropwizard

Doc Versions

15

77

97

Dropwizard Documentation, Release 0.8.6

Dropwizard pulls together stable, mature libraries from the Java ecosystem into a simple, light-weight package that
lets you focus on getting things done.

Dropwizard has out-of-the-box support for sophisticated configuration, application metrics, logging, operational
tools, and much more, allowing you and your team to ship a production-quality web service in the shortest time
possible.

Contents 1

Dropwizard Documentation, Release 0.8.6

2 Contents

CHAPTER 1

Getting Started

Getting Started will guide you through the process of creating a simple Dropwizard project: Hello
World. Along the way, we’ll explain the various underlying libraries and their roles, important con-
cepts in Dropwizard, and suggest some organizational techniques to help you as your project grows.
(Or you can just skip to the fun part.)

1.1 Overview

Dropwizard straddles the line between being a library and a framework. Its goal is to provide performant, reliable
implementations of everything a production-ready web application needs. Because this functionality is extracted into
a reusable library, your application remains lean and focused, reducing both time-to-market and maintenance burdens.

1.1.1 Jetty for HTTP

Because you can’t be a web application without HTTP, Dropwizard uses the Jetty HTTP library to embed an incredibly
tuned HTTP server directly into your project. Instead of handing your application off to a complicated application
server, Dropwizard projects have a main method which spins up an HTTP server. Running your application as a
simple process eliminates a number of unsavory aspects of Java in production (no PermGen issues, no application
server configuration and maintenance, no arcane deployment tools, no class loader troubles, no hidden application
logs, no trying to tune a single garbage collector to work with multiple application workloads) and allows you to use
all of the existing Unix process management tools instead.

1.1.2 Jersey for REST

For building RESTful web applications, we’ve found nothing beats Jersey (the JAX-RS reference implementation) in
terms of features or performance. It allows you to write clean, testable classes which gracefully map HTTP requests to
simple Java objects. It supports streaming output, matrix URI parameters, conditional GET requests, and much, much
more.

http://www.eclipse.org/jetty/
http://jersey.java.net
http://jcp.org/en/jsr/detail?id=311

Dropwizard Documentation, Release 0.8.6

1.1.3 Jackson for JSON

In terms of data formats, JSON has become the web’s lingua franca, and Jackson is the king of JSON on the JVM.
In addition to being lightning fast, it has a sophisticated object mapper, allowing you to export your domain models
directly.

1.1.4 Metrics for metrics

The Metrics library rounds things out, providing you with unparalleled insight into your code’s behavior in your
production environment.

1.1.5 And Friends

In addition to Jetty, Jersey, and Jackson, Dropwizard also includes a number of libraries to help you ship more quickly
and with fewer regrets.

* Guava, which, in addition to highly optimized immutable data structures, provides a growing number of classes
to speed up development in Java.

* Logback and slf4j for performant and flexible logging.

* Hibernate Validator, the JSR-303 reference implementation, provides an easy, declarative framework for vali-
dating user input and generating helpful, i18n-friendly error messages.

* The Apache HttpClient and Jersey client libraries allow for both low- and high-level interaction with other web
services.

» JDBI is the most straight-forward way to use a relational database with Java.

 Liquibase is a great way to keep your database schema in check throughout your development and release cycles,
applying high-level database refactorings instead of one-off DDL scripts.

¢ Freemarker and Mustache are simple templating systems for more user-facing applications.
 Joda Time is a very complete, sane library for handling dates and times.

Now that you’ve gotten the lay of the land, let’s dig in!

1.2 Setting Up Maven

We recommend you use Maven for new Dropwizard applications. If you’re a big Ant / Ivy, Buildr, Gradle, SBT,
Leiningen, or Gant fan, that’s cool, but we use Maven and we’ll be using Maven as we go through this example
application. If you have any questions about how Maven works, Maven: The Complete Reference should have what
you’re looking for. (We’re assuming you know how to create a new Maven project. If not, you can use this to get
started.)

First, add a dropwizard.version property to your POM with the current version of Dropwizard (which is 0.8.6):

<properties>
<dropwizard.version>INSERT VERSION HERE</dropwizard.version>
</properties>

Add the dropwizard-core library as a dependency:

4 Chapter 1. Getting Started

http://wiki.fasterxml.com/JacksonHome
http://metrics.codahale.com
http://www.eclipse.org/jetty/
http://jersey.java.net
http://wiki.fasterxml.com/JacksonHome
http://code.google.com/p/guava-libraries/
http://logback.qos.ch/
http://www.slf4j.org/
http://www.hibernate.org/subprojects/validator.html
http://jcp.org/en/jsr/detail?id=303
http://hc.apache.org/httpcomponents-client-ga/index.html
http://jersey.java.net
http://www.jdbi.org
http://www.liquibase.org
http://freemarker.sourceforge.net/
http://mustache.github.io/
http://joda-time.sourceforge.net/
http://maven.apache.org
http://ant.apache.org/
http://ant.apache.org/ivy/
http://buildr.apache.org/
http://www.gradle.org/
https://github.com/harrah/xsbt/wiki
https://github.com/technomancy/leiningen
http://gant.codehaus.org/
http://www.sonatype.com/books/mvnref-book/reference/
https://gist.github.com/2019732

Dropwizard Documentation, Release 0.8.6

<dependencies>
<dependency>
<groupId>io.dropwizard</groupId>
<artifactId>dropwizard-core</artifactId>
<version>S${dropwizard.version}</version>
</dependency>
</dependencies>

Alright, that’s enough XML. We’ve got a Maven project set up now, and it’s time to start writing real code.

1.3 Creating A Configuration Class

Each Dropwizard application has its own subclass of the Configuration class which specifies environment-
specific parameters. These parameters are specified in a YAML configuration file which is deserialized to an instance
of your application’s configuration class and validated.

The application we’ll be building is a high-performance Hello World service, and one of our requirements is that we
need to be able to vary how it says hello from environment to environment. We’ll need to specify at least two things
to begin with: a template for saying hello and a default name to use in case the user doesn’t specify their name.

Here’s what our configuration class will looks like, full example conf here :

package com.example.helloworld;

import io.dropwizard.Configuration;
import com.fasterxml. jackson.annotation.JsonProperty;
import org.hibernate.validator.constraints.NotEmpty;

public class HelloWorldConfiguration extends Configuration {
@NotEmpty
private String template;

@NotEmpty
private String defaultName = "Stranger";

@JsonProperty
public String getTemplate () {
return template;

@JsonProperty
public void setTemplate (String template) {
this.template = template;

@JsonProperty
public String getDefaultName () {
return defaultName;

@JsonProperty
public void setDefaultName (String name) {
this.defaultName = name;

1.3. Creating A Configuration Class 5

http://www.yaml.org/
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/src/main/java/com/example/helloworld/HelloWorldConfiguration.java

Dropwizard Documentation, Release 0.8.6

There’s a lot going on here, so let’s unpack a bit of it.

When this class is deserialized from the YAML file, it will pull two root-level fields from the YAML object:
template, the template for our Hello World saying, and de faultName, the default name to use. Both template
and defaultName are annotated with @NotEmpty, so if the YAML configuration file has blank values for either
or is missing template entirely an informative exception will be thrown and your application won’t start.

Both the getters and setters for template and defaultName are annotated with @ JsonProperty, which allows
Jackson to both deserialize the properties from a YAML file but also to serialize it.

Note: The mapping from YAML to your application’s Configuration instance is done by Jackson. This means
your Configuration class can use all of Jackson’s object-mapping annotations. The validation of @NotEmpty is
handled by Hibernate Validator, which has a wide range of built-in constraints for you to use.

Our YAML file, will then look like the below, full example yml here :

template: Hello, %s!
defaultName: Stranger

Dropwizard has many more configuration parameters than that, but they all have sane defaults so you can keep your
configuration files small and focused.

So save that YAML file as hello-world.yml, because we’ll be getting up and running pretty soon and we’ll need
it. Next up, we’re creating our application class!

1.4 Creating An Application Class

Combined with your project’s Configuration subclass, its Applicat ion subclass forms the core of your Drop-
wizard application. The Application class pulls together the various bundles and commands which provide basic
functionality. (More on that later.) For now, though, our HelloWorldApplication looks like this:

package com.example.helloworld;

import io.dropwizard.Application;

import io.dropwizard.setup.Bootstrap;

import io.dropwizard.setup.Environment;

import com.example.helloworld.resources.HelloWorldResource;
import com.example.helloworld.health.TemplateHealthCheck;

public class HelloWorldApplication extends Application<HelloWorldConfiguration> {
public static void main(String[] args) throws Exception {
new HelloWorldApplication () .run(args);

@Override
public String getName () {
return "hello-world";

@Override
public void initialize (Bootstrap<HelloWorldConfiguration> bootstrap) {
// nothing to do yet

(continues on next page)

6 Chapter 1. Getting Started

http://wiki.fasterxml.com/JacksonHome
http://wiki.fasterxml.com/JacksonAnnotations
http://docs.jboss.org/hibernate/validator/4.2/reference/en-US/html_single/#validator-defineconstraints-builtin
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

@Override
public void run (HelloWorldConfiguration configuration,
Environment environment) {
// nothing to do yet

As you can see, HelloWorldApplication is parameterized with the application’s configuration type,
HelloWorldConfiguration. An initialize method is used to configure aspects of the application required
before the application is run, like bundles, configuration source providers, etc. Also, we’ve added a static main
method, which will be our application’s entry point. Right now, we don’t have any functionality implemented, so our
run method is a little boring. Let’s fix that!

1.5 Creating A Representation Class

Before we can get into the nuts-and-bolts of our Hello World application, we need to stop and think about our APIL.
Luckily, our application needs to conform to an industry standard, RFC 1149, which specifies the following JSON
representation of a Hello World saying:

{
"id": 1,
"content": "Hi!"

The id field is a unique identifier for the saying, and content is the textual representation of the saying. (Thankfully,
this is a fairly straight-forward industry standard.)

To model this representation, we’ll create a representation class:

package com.example.helloworld.core;

import com.fasterxml. jackson.annotation.JsonProperty;
import org.hibernate.validator.constraints.Length;

public class Saying {
private long id;

@Length (max = 3)
private String content;

public Saying() {
// Jackson deserialization

public Saying(long id, String content) {
this.id = id;
this.content = content;

@JsonProperty
public long getId() {
return id;

(continues on next page)

1.5. Creating A Representation Class 7

http://www.ietf.org/rfc/rfc1149.txt

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

@JsonProperty
public String getContent () {
return content;

This is a pretty simple POJO, but there are a few things worth noting here.

First, it’s immutable. This makes Saying instances very easy to reason about in multi-threaded environments as well
as single-threaded environments. Second, it uses the Java Bean standard for the 1d and content properties. This
allows Jackson to serialize it to the JSON we need. The Jackson object mapping code will populate the id field of the
JSON object with the return value of #getId (), likewise with content and #getContent (). Lastly, the bean
leverages validation to ensure the content size is no greater than 3.

Note: The JSON serialization here is done by Jackson, which supports far more than simple JavaBean objects like
this one. In addition to the sophisticated set of annotations, you can even write your own custom serializers and
deserializers.

Now that we’ve got our representation class, it makes sense to start in on the resource it represents.

1.6 Creating A Resource Class

Jersey resources are the meat-and-potatoes of a Dropwizard application. Each resource class is associated with
a URI template. For our application, we need a resource which returns new Saying instances from the URI /
hello-world, so our resource class will look like this:

package com.example.helloworld.resources;

import com.example.helloworld.core.Saying;
import com.google.common.base.Optional;
import com.codahale.metrics.annotation.Timed;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.QueryParam;

import javax.ws.rs.core.MediaType;

import java.util.concurrent.atomic.AtomicLong;

@Path ("/hello-world")

@Produces (MediaType.APPLICATION_JSON)

public class HelloWorldResource {
private final String template;
private final String defaultName;
private final AtomicLong counter;

public HelloWorldResource (String template, String defaultName) {
this.template = template;
this.defaultName = defaultName;
this.counter = new AtomicLong() ;

(continues on next page)

8 Chapter 1. Getting Started

http://wiki.fasterxml.com/JacksonHome
http://wiki.fasterxml.com/JacksonAnnotations

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

QGET

@Timed

public Saying sayHello (@QueryParam("name") Optional<String> name) {
final String value = String.format (template, name.or (defaultName));
return new Saying (counter.incrementAndGet (), wvalue);

Finally, we’re in the thick of it! Let’s start from the top and work our way down.

HelloWorldResource has two annotations: @Path and @Produces. @Path ("/hello-world")
tells Jersey that this resource is accessible at the URI /hello-world, and @Produces (MediaType.
APPLICATION_JSON) lets Jersey’s content negotiation code know that this resource produces representations which
are application/json.

HelloWorldResource takes two parameters for construction: the template it uses to produce the saying and
the defaultName used when the user declines to tell us their name. An AtomicLong provides us with a cheap,
thread-safe way of generating unique(ish) IDs.

Warning: Resource classes are used by multiple threads concurrently. In general, we recommend that resources
be stateless/immutable, but it’s important to keep the context in mind.

#sayHello (Optional<String>) is the meat of this class, and it’s a fairly simple method. The
@QueryParam("name") annotation tells Jersey to map the name parameter from the query string to the name
parameter in the method. If the client sends a request to /hello-world?name=Dougie, sayHello will be
called with Optional.of ("Dougie"); if there is no name parameter in the query string, sayHello will be
called with Optional.absent (). (Support for Guava’s Optional is a little extra sauce that Dropwizard adds to
Jersey’s existing functionality.)

Inside the sayHello method, we increment the counter, format the template using String.format (String,
Object...), and return a new Saying instance.

Because sayHello is annotated with @Timed, Dropwizard automatically records the duration and rate of its invo-
cations as a Metrics Timer.

Once sayHello has returned, Jersey takes the Saying instance and looks for a provider class which can write
Saying instances as application/json. Dropwizard has one such provider built in which allows for producing
and consuming Java objects as JSON objects. The provider writes out the JSON and the client receives a 200 OK
response with a content type of application/json.

1.6.1 Registering A Resource

Before that will actually work, though, we need to go back to HelloWorldApplication and add this new re-
source class. In its run method we can read the template and default name from the HelloWorldConfiguration
instance, create a new HelloWorldResource instance, and then add it to the application’s Jersey environment:

@Override
public void run (HelloWorldConfiguration configuration,
Environment environment) {
final HelloWorldResource resource = new HelloWorldResource (
configuration.getTemplate (),
configuration.getDefaultName ()
)i

(continues on next page)

1.6. Creating A Resource Class 9

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

environment. jersey () .register (resource) ;

When our application starts, we create a new instance of our resource class with the parameters from the configuration
file and hand it off to the Environment, which acts like a registry of all the things your application can do.

Note: A Dropwizard application can contain many resource classes, each corresponding to its own URI pattern. Just
add another @Path-annotated resource class and call register with an instance of the new class.

Before we go too far, we should add a health check for our application.

1.7 Creating A Health Check

Health checks give you a way of adding small tests to your application to allow you to verify that your application is
functioning correctly in production. We strongly recommend that all of your applications have at least a minimal set
of health checks.

Note: We recommend this so strongly, in fact, that Dropwizard will nag you should you neglect to add a health check
to your project.

Since formatting strings is not likely to fail while an application is running (unlike, say, a database connection pool),
we’ll have to get a little creative here. We’ll add a health check to make sure we can actually format the provided
template:

package com.example.helloworld.health;
import com.codahale.metrics.health.HealthCheck;

public class TemplateHealthCheck extends HealthCheck {
private final String template;

public TemplateHealthCheck (String template) {
this.template = template;
}

@Override
protected Result check () throws Exception {
final String saying = String.format (template, "TEST");
if (!saying.contains ("TEST")) {
return Result.unhealthy ("template doesn't include a name");
}
return Result.healthy();

TemplateHealthCheck checks for two things: that the provided template is actually a well-formed format string,
and that the template actually produces output with the given name.

If the string is not a well-formed format string (for example, someone accidentally put Hel1o, $%s% inthe configura-
tion file), then String. format (String, Object...) willthrowanIllegalFormatException and the
health check will implicitly fail. If the rendered saying doesn’t include the test string, the health check will explicitly
fail by returning an unhealthy Result.

10 Chapter 1. Getting Started

Dropwizard Documentation, Release 0.8.6

1.7.1 Adding A Health Check

As with most things in Dropwizard, we create a new instance with the appropriate parameters and add it to the
Environment:

@Override
public void run (HelloWorldConfiguration configuration,
Environment environment) {
final HelloWorldResource resource = new HelloWorldResource (
configuration.getTemplate (),
configuration.getDefaultName ()
)i
final TemplateHealthCheck healthCheck =
new TemplateHealthCheck (configuration.getTemplate());
environment.healthChecks () .register ("template", healthCheck);
environment. jersey () .register (resource) ;

Now we’re almost ready to go!

1.8 Building Fat JARs

We recommend that you build your Dropwizard applications as “fat” JAR files — single . jar files which contain
all of the . class files required to run your application. This allows you to build a single deployable artifact which
you can promote from your staging environment to your QA environment to your production environment without
worrying about differences in installed libraries. To start building our Hello World application as a fat JAR, we need
to configure a Maven plugin called maven-shade. In the <build><plugins> section of your pom.xml file,
add this:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.3</version>

<configuration>
<createDependencyReducedPom>t rue</createDependencyReducedPom>
<filters>
<filter>
<artifact>x:*</artifact>
<excludes>
<exclude>META-INF /% .SF</exclude>
<exclude>META-INF/x.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
</configuration>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.
resource ervicesResourceTran Fnrmar"/)

(continues on next page)

1.8. Building Fat JARs 11

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

<transformer implementation="org.apache.maven.plugins.shade.

—resource.ManifestResourceTransformer">
<mainClass>com.example.helloworld.HelloWorldApplication</

—mainClass>

</transformer>

</transformers>
</configuration>
</execution>
</executions>

</plugin>

This configures Maven to do a couple of things during its package phase:

¢ Produce a pom.xml file which doesn’t include dependencies for the libraries whose contents are included in
the fat JAR.

* Exclude all digital signatures from signed JARs. If you don’t, then Java considers the signature invalid and
won’t load or run your JAR file.

¢ Collate the various META-INF/services entries in the JARs instead of overwriting them. (Neither Drop-
wizard nor Jersey works without those.)

e Set com.example.helloworld.HelloWorldApplication asthe JAR’s MainClass. This will al-
low you to run the JAR using java -jar.

Warning: If your application has a dependency which must be signed (e.g., a JCA/JCE provider or other trusted
library), you have to add an exclusion to the maven—-shade-plugin configuration for that library and include
that JAR in the classpath.

Warning: Since Dropwizard is using the Java ServiceLoader functionality to register and load extensions, the
minimizeJar option of the maven-shade-plugin will lead to non-working application JARs.

1.8.1 Versioning Your JARs

Dropwizard can also wuse the project version if it’s embedded in the JAR’s manifest as the
Implementation-Version. To embed this information using Maven, add the following to the
<build><plugins> section of your pom.xml file:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.4</version>
<configuration>
<archive>
<manifest>
<addDefaultImplementationEntries>true</
—addDefaultImplementationEntries>
</manifest>
</archive>
</configuration>
</plugin>

12 Chapter 1. Getting Started

http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html
http://maven.apache.org/plugins/maven-shade-plugin/examples/includes-excludes.html
http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html
https://maven.apache.org/plugins/maven-shade-plugin/shade-mojo.html#minimizeJar

Dropwizard Documentation, Release 0.8.6

This can be handy when trying to figure out what version of your application you have deployed on a machine.

Once you’ve got that configured, go into your project directory and run mvn package (or run the package goal
from your IDE). You should see something like this:

[INFO] Including org.eclipse.jetty:jetty-util:jar:7.6.0.RCO in the shaded jar.
[INFO] Including com.google.guava:guava:jar:10.0.1 in the shaded jar.
[INFO] Including com.google.code.findbugs: jsr305:jar:1.3.9 in the shaded jar.

[INFO] Including javax.validation:validation-api:jar:1.0.0.GA in the shaded jar.
[INFO] Including org.yaml:snakeyaml:jar:1.9 in the shaded jar.

[INFO] Replacing original artifact with shaded artifact.

[INFO] Replacing /Users/yourname/Projects/hello-world/target/hello-world-0.0.1-
—+SNAPSHOT. jar with /Users/yourname/Projects/hello-world/target/hello-world-0.0.1-
—SNAPSHOT-shaded. jar

[INFO] ————— == o
[INFO] BUILD SUCCESS

[INFO] —mm e e e
[INFO] Total time: 8.415s

[INFO] Finished at: Fri Dec 02 16:26:42 PST 2011

[INFO] Final Memory: 11M/81M

[INFO] ————————m—mmmmmm

]
1
]
[INFO] Including org.hibernate:hibernate-validator:jar:4.2.0.Final in the shaded jar.
]
]
]

Congratulations! You’ve built your first Dropwizard project! Now it’s time to run it!

1.9 Running Your Application

Now that you’ve built a JAR file, it’s time to run it.

In your project directory, run this:

java —-jar target/hello-world-0.0.1-SNAPSHOT. jar

You should see something like the following:

usage: java —-jar hello-world-0.0.1-SNAPSHOT. jar
[-h] [-v] {server}

positional arguments:
{server} available commands

optional arguments:
-h, —--help show this help message and exit
-v, —-version show the service version and exit

Dropwizard takes the first command line argument and dispatches it to a matching command. In this case, the only
command available is server, which runs your application as an HTTP server. The server command requires a
configuration file, so let’s go ahead and give it the YAML file we previously saved:

java —-jar target/hello-world-0.0.1-SNAPSHOT.jar server hello-world.yml

You should see something like the following:

INFO [2011-12-03 00:38:32,927] io.dropwizard.cli.ServerCommand: Starting hello-world
INFO [2011-12-03 00:38:32,931] org.eclipse.jetty.server.Server: jetty-7.x.y-SNAPSHOT
INFO [2011-12-03 00:38:32,936] org.eclipse.jetty.server.handler.ContextHandler:
—started o.e.j.s.ServletContextHandler{/,null}

(continues on next page)

1.9. Running Your Application 13

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

INFO [2011-12-03 00:38:32,999] com.sun.jersey.server.impl.application.
—WebApplicationImpl: Initiating Jersey application, version 'Jersey: 1.10 11/02/2011
—03:53 PM'

INFO [2011-12-03 00:38:33,041] io.dropwizard.setup.Environment:

GET /hello-world (com.example.helloworld.resources.HelloWorldResource)

INFO [2011-12-03 00:38:33,215] org.eclipse.jetty.server.handler.ContextHandler:
—started o.e.j.s.ServletContextHandler{/,null}

INFO [2011-12-03 00:38:33,235] org.eclipse.jetty.server.AbstractConnector: Started
—BlockingChannelConnector@0.0.0.0:8080 STARTING

INFO [2011-12-03 00:38:33,238] org.eclipse.jetty.server.AbstractConnector: Started
—SocketConnector@0.0.0.0:8081 STARTING

Your Dropwizard application is now listening on ports 8080 for application requests and 8081 for administration
requests. If you press ~C, the application will shut down gracefully, first closing the server socket, then waiting for
in-flight requests to be processed, then shutting down the process itself.

But while it’s up, let’s give it a whirl! Click here to say hello! Click here to get even friendlier!

So, we’re generating sayings. Awesome. But that’s not all your application can do. One of the main reasons for using
Dropwizard is the out-of-the-box operational tools it provides, all of which can be found on the admin port.

If you click through to the metrics resource, you can see all of your application’s metrics represented as a JSON object.

The threads resource allows you to quickly get a thread dump of all the threads running in that process.

Hint: When a Jetty worker thread is handling an incoming HTTP request, the thread name is set to the method and
URI of the request. This can be very helpful when debugging a poorly-behaving request.

The healthcheck resource runs the health check class we wrote. You should see something like this:

* deadlocks: OK
* template: OK

template here is the result of your TemplateHealthCheck, which unsurprisingly passed. deadlocks is a
built-in health check which looks for deadlocked JVM threads and prints out a listing if any are found.

1.10 Next Steps

Well, congratulations. You’ve got a Hello World application ready for production (except for the lack of tests) that’s
capable of doing 30,000-50,000 requests per second. Hopefully you’ve gotten a feel for how Dropwizard combines
Jetty, Jersey, Jackson, and other stable, mature libraries to provide a phenomenal platform for developing RESTful
web applications.

There’s a lot more to Dropwizard than is covered here (commands, bundles, servlets, advanced configuration, valida-
tion, HTTP clients, database clients, views, etc.), all of which is covered by the User Manual.

14 Chapter 1. Getting Started

http://localhost:8080/hello-world
http://localhost:8080/hello-world?name=Successful+Dropwizard+User
http://localhost:8081/
http://localhost:8081/metrics
http://localhost:8081/threads
http://localhost:8081/healthcheck

CHAPTER 2

User Manual

This goal of this document is to provide you with all the information required to build, organize, test,
deploy, and maintain Dropwizard-based applications. If you’re new to Dropwizard, you should read
the Getting Started guide first.

2.1 Dropwizard Core

The dropwizard-core module provides you with everything you’ll need for most of your applica-
tions.
It includes:

* Jetty, a high-performance HTTP server.

e Jersey, a full-featured RESTful web framework.

* Jackson, the best JSON library for the JVM.

* Metrics, an excellent library for application metrics.

* Guava, Google’s excellent utility library.

» Logback, the successor to Log4j, Java’s most widely-used logging framework.

* Hibernate Validator, the reference implementation of the Java Bean Validation standard.

Dropwizard consists mostly of glue code to automatically connect and configure these components.

2.1.1 Organizing Your Project

In general, we recommend you separate your projects into three Maven modules: project-api,
project-client, and project-application.

project-api should contain your Representations; project—client should use those classes and an HTTP
client to implement a full-fledged client for your application, and project-application should provide the
actual application implementation, including Resources.

15

Dropwizard Documentation, Release 0.8.6

Our applications tend to look like this:

* com.example.myapplication:
— api: Representations.
— cli: Commands
— client: Client implementation for your application
— core: Domain implementation
— jdbi: Database access classes
— health: Health Checks
— resources: Resources
— MyApplication: The application class

— MyApplicationConfiguration: configuration class

2.1.2 Application

The main entry point into a Dropwizard application is, unsurprisingly, the Application class. Each
Application has a name, which is mostly used to render the command-line interface. In the constructor of your
Application you can add Bundles and Commands to your application.

2.1.3 Configuration

Dropwizard provides a number of built-in configuration parameters. They are well documented in the example
project’s configuration.

Each Application subclass has a single type parameter: that of its matching Configuration subclass. These
are usually at the root of your application’s main package. For example, your User application would have two
classes: UserApplicationConfiguration, extending Configuration, and UserApplication, ex-
tending Application<UserApplicationConfiguration>.

When your application runs Configured Commands like the server command, Dropwizard parses the provided
YAML configuration file and builds an instance of your application’s configuration class by mapping YAML field
names to object field names.

Note: If your configuration file doesn’t end in . yml or . yaml, Dropwizard tries to parse it as a JSON file.

In order to keep your configuration file and class manageable, we recommend grouping related configuration param-
eters into independent configuration classes. If your application requires a set of configuration parameters in order to
connect to a message queue, for example, we recommend that you create a new MessageQueueFactory class:

public class MessageQueueFactory {
@NotEmpty
private String host;

@Min (1)
@Max (65535)
private int port = 5672;

@JsonProperty

(continues on next page)

16 Chapter 2. User Manual

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

public String getHost () {
return host;

@JsonProperty
public void setHost (String host) {
this.host = host;

@JsonProperty
public int getPort () {
return port;

@JsonProperty
public void setPort (int port) {
this.port = port;

public MessageQueueClient build(Environment environment) {

MessageQueueClient client = new MessageQueueClient (getHost (), getPort());
environment.lifecycle () .manage (new Managed () {
@Override

public void start () {
}

@Override
public void stop () {
client.close();

}i
return client;

In this example our factory will automatically tie our MessageQueueClient connection to the lifecycle of our
application’s Environment.

Your main Configuration subclass can then include this as a member field:

public class ExampleConfiguration extends Configuration ({
@valid
@NotNull
private MessageQueueFactory messageQueue = new MessageQueueFactory();

@JIsonProperty ("messageQueue")
public MessageQueueFactory getMessageQueueFactory () {
return messageQueue;

@JsonProperty ("messageQueue")
public void setMessageQueueFactory (MessageQueueFactory factory) {
this.messageQueue = factory;

And your Application subclass can then use your factory to directly construct a client for the message queue:

2.1. Dropwizard Core 17

Dropwizard Documentation, Release 0.8.6

public void run (ExampleConfiguration configuration,
Environment environment) {
MessageQueueClient messageQueue = configuration.getMessageQueueFactory () .
—build (environment) ;

}

Then, in your application’s YAML file, you can use a nested messageQueue field:

messageQueue:
host: mg.example.com
port: 5673

The @NotNull, @NotEmpty, @Min, @Max, and @Valid annotations are part of Dropwizard’s Validation function-
ality. If your YAML configuration file’s messageQueue . host field was missing (or was a blank string), Dropwiz-
ard would refuse to start and would output an error message describing the issues.

Once your application has parsed the YAML file and constructed its Configuration instance, Dropwizard then
calls your Application subclass to initialize your application’s Environment.

Note: You can override configuration settings by passing special Java system properties when starting your applica-
tion. Overrides must start with prefix dw ., followed by the path to the configuration value being overridden.

For example, to override the Logging level, you could start your application like this:
java -Ddw.logging.level=DEBUG server my-config.json

This will work even if the configuration setting in question does not exist in your config file, in which case it will get
added.

You can override configuration settings in arrays of objects like this:
java -Ddw.server.applicationConnectors[0].port=9090 server my-config. json
You can override configuration settings in maps like this:

java -Ddw.database.properties.hibernate.hbm2ddl.auto=none server my-config.
json

[

You can also override a configuration setting that is an array of strings by using the °, character as an array ele-
ment separator. For example, to override a configuration setting myapp.myserver.hosts that is an array of strings in
the configuration, you could start your service like this: java -Ddw.myapp.myserver.hosts=serverl,
server2, server3 server my-config. json

If you need to use the ‘,” character in one of the values, you can escape it by using *,’ instead.

The array override facility only handles configuration elements that are arrays of simple strings. Also, the setting in
question must already exist in your configuration file as an array; this mechanism will not work if the configuration
key being overridden does not exist in your configuration file. If it does not exist or is not an array setting, it will get
added as a simple string setting, including the °, characters as part of the string.

Environment variables

The dropwizard-configuration module also provides the capabilities to substitute configura-
tion settings with the value of environment variables using a SubstitutingSourceProvider and
EnvironmentVariableSubstitutor.

18 Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

public class MyApplication extends Application<MyConfiguration> {
/S]
@Override
public void initialize (Bootstrap<MyConfiguration> bootstrap) {
// Enable variable substitution with environment variables
bootstrap.setConfigurationSourceProvider (
new SubstitutingSourceProvider (bootstrap.
—getConfigurationSourceProvider (),
new,_
—EnvironmentVariableSubstitutor ()
)

)i

/S L]

The configuration settings which should be substituted need to be explicitly written in the configuration file and follow
the substitution rules of StrSubstitutor from the Apache Commons Lang library.

mySetting: ${DW_MY_SETTING}
defaultSetting: ${DW_DEFAULT_SETTING:-default value}

In general SubstitutingSourceProvider isn’t restricted to substitute environment variables but can be used
to replace variables in the configuration source with arbitrary values by passing a custom St rSubstitutor imple-
mentation.

SSL

SSL support is built into Dropwizard. You will need to provide your own java keystore, which is outside the scope of
this document (keytool is the command you need). There is a test keystore you can use in the Dropwizard example
project.

server:
applicationConnectors:
- type: https
port: 8443
keyStorePath: example.keystore
keyStorePassword: example
validateCerts: false

2.1.4 Bootstrapping

Before a Dropwizard application can provide the command-line interface, parse a configuration file, or run as a
server, it must first go through a bootstrapping phase. This phase corresponds to your Application subclass’s
initialize method. You can add Bundles, Commands, or register Jackson modules to allow you to include cus-
tom types as part of your configuration class.

2.1.5 Environments

A Dropwizard Environment consists of all the Resources, servlets, filters, Health Checks, Jersey providers, Man-
aged Objects, Tasks, and Jersey properties which your application provides.

2.1. Dropwizard Core 19

https://commons.apache.org/proper/commons-lang/javadocs/api-release/org/apache/commons/lang3/text/StrSubstitutor.html
https://github.com/dropwizard/dropwizard/tree/master/dropwizard-example
https://github.com/dropwizard/dropwizard/tree/master/dropwizard-example

Dropwizard Documentation, Release 0.8.6

Each Application subclass implements a run method. This is where you should be creating new resource in-
stances, etc., and adding them to the given Environment class:

@Override
public void run (ExampleConfiguration config,
Environment environment) {
// encapsulate complicated setup logic in factories
final Thingy thingy = config.getThingyFactory () .build();

environment. jersey () .register (new ThingyResource (thingy));
environment.healthChecks () .register ("thingy", new ThingyHealthCheck (thingy));

It’s important to keep the run method clean, so if creating an instance of something is complicated, like the Thingy
class above, extract that logic into a factory.

2.1.6 Health Checks

A health check is a runtime test which you can use to verify your application’s behavior in its production environment.
For example, you may want to ensure that your database client is connected to the database:

public class DatabaseHealthCheck extends HealthCheck {
private final Database database;

public DatabaseHealthCheck (Database database) {
this.database = database;

@Override
protected Result check () throws Exception {
if (database.isConnected()) {
return Result.healthy();
} else {
return Result.unhealthy ("Cannot connect to " + database.getUrl());

You can then add this health check to your application’s environment:

environment.healthChecks () .register ("database", new DatabaseHealthCheck (database));

By sending a GET request to /healthcheck on the admin port you can run these tests and view the results:

$ curl http://dw.example.com:8081/healthcheck
{"deadlocks":{"healthy":true}, "database":{"healthy":true}}

If all health checks report success, a 200 OK is returned. If any fail, a 500 Internal Server Error is
returned with the error messages and exception stack traces (if an exception was thrown).

All Dropwizard applications ship with the deadlocks health check installed by default, which uses Java 1.6’s built-
in thread deadlock detection to determine if any threads are deadlocked.

20 Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

2.1.7 Managed Objects

Most applications involve objects which need to be started and stopped: thread pools, database connections, etc. Drop-
wizard provides the Managed interface for this. You can either have the class in question implement the #start ()
and #stop () methods, or write a wrapper class which does so. Adding a Managed instance to your application’s
Environment ties that object’s lifecycle to that of the application’s HTTP server. Before the server starts, the
#start () method is called. After the server has stopped (and after its graceful shutdown period) the #stop ()
method is called.

For example, given a theoretical Riak client which needs to be started and stopped:

public class RiakClientManager implements Managed {
private final RiakClient client;

public RiakClientManager (RiakClient client) {
this.client = client;

@Override
public void start () throws Exception {
client.start ();

@Override
public void stop () throws Exception {
client.stop();

public class MyApplication extends Application<MyConfiguration>{
@Override
public void run (MyApplicationConfiguration configuration, Environment
—environment) {
RiakClient client = ...;
RiakClientManager riakClientManager = new RiakClientManager (client);
environment.lifecycle () .manage (riakClientManager) ;

If RiakClientManager#start () throws an exception—e.g., an error connecting to the server—your application
will not start and a full exception will be logged. If RiakClientManager#stop () throws an exception, the
exception will be logged but your application will still be able to shut down.

It should be noted that Environment has built-in factory methods for
ExecutorService and ScheduledExecutorService instances which
are managed. See LifecycleEnvironment#executorService and

LifecycleEnvironment#scheduledExecutorService for details.

2.1.8 Bundles

A Dropwizard bundle is a reusable group of functionality, used to define blocks of an application’s behavior. For
example, AssetBundle from the dropwizard-assets module provides a simple way to serve static assets
from your application’s src/main/resources/assets directory as files available from /assets/« (or any
other path) in your application.

Some bundles require configuration parameters. These bundles implement ConfiguredBundle and will require
your application’s Configuration subclass to implement a specific interface.

2.1. Dropwizard Core 21

http://riak.basho.com

Dropwizard Documentation, Release 0.8.6

Serving Assets

Either your application or your static assets can be served from the root path, but not both. The latter is useful when
using Dropwizard to back a Javascript application. To enable it, move your application to a sub-URL.

server:
type: simple
rootPath: /application/x

Then use an extended AssetsBundle constructor to serve resources in the assets folder from the root path.
index.htmis served as the default page.

@Override
public void initialize (Bootstrap<HelloWorldConfiguration> bootstrap) {
bootstrap.addBundle (new AssetsBundle ("/assets/", "/"));

When an AssetBundle is added to the application, it is registered as a servlet using a default name of assets. If
the application needs to have multiple AssetBundle instances, the extended constructor should be used to specify
a unique name for the AssetBundle.

@Override

public void initialize (Bootstrap<HelloWorldConfiguration> bootstrap) {
bootstrap.addBundle (new AssetsBundle ("/assets/css", "/css", null, "css"));
bootstrap.addBundle (new AssetsBundle ("/assets/js", "/js", null, "js"));
bootstrap.addBundle (new AssetsBundle ("/assets/fonts", "/fonts", null, "fonts"));

2.1.9 Commands

Commands are basic actions which Dropwizard runs based on the arguments provided on the command line. The built-
in server command, for example, spins up an HTTP server and runs your application. Each Command subclass has
a name and a set of command line options which Dropwizard will use to parse the given command line arguments.

public class MyApplication extends Application<MyConfiguration>{

@Override
public void initialize (Bootstrap<DropwizardConfiguration> bootstrap) {
bootstrap.addCommand (new MyCommand ()) ;

Configured Commands

Some commands require access to configuration parameters and should extend the ConfiguredCommand class,
using your application’s Configuration class as its type parameter. Dropwizard will treat the first argument on
the command line as the path to a YAML configuration file, parse and validate it, and provide your command with an
instance of the configuration class.

2.1.10 Tasks

A Task is a run-time action your application provides access to on the administrative port via HTTP. All Drop-
wizard applications start with: the gc task, which explicitly triggers the JVM’s garbage collection (This is useful,

22 Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

for example, for running full garbage collections during off-peak times or while the given application is out of ro-
tation.); and the 1og—level task, which configures the level of any number of loggers at runtime (akin to Log-
back’s JmxConfigurator). The execute method of a Task can be annotated with @Timed, @Metered, and
@ExceptionMetered. Dropwizard will automatically record runtime information about your tasks. Here’s a basic
task class:

public class TruncateDatabaseTask extends Task {
private final Database database;

public TruncateDatabaseTask (Database database) {
super ('truncate');
this.database = database;

@Override
public void execute (ImmutableMultimap<String, String> parameters, PrintWriter
—output) throws Exception {
this.database.truncate () ;

}

You can then add this task to your application’s environment:

environment.admin () .addTask (new TruncateDatabaseTask (database)) ;

Running a task can be done by sending a POST request to /tasks/ {task—name} on the admin port. For example:

$ curl -X POST http://dw.example.com:8081/tasks/gc
Running GC...
Done'!

2.1.11 Logging

Dropwizard uses Logback for its logging backend. It provides an slf4j implementation, and even routes all java.
util.logging, Log4j, and Apache Commons Logging usage through Logback.

slf4j provides the following logging levels:

ERROR Error events that might still allow the application to continue running.

WARN Potentially harmful situations.

INFO Informational messages that highlight the progress of the application at coarse-grained level.

DEBUG Fine-grained informational events that are most useful to debug an application.

TRACE Finer-grained informational events than the DEBUG level.

Log Format

Dropwizard’s log format has a few specific goals:
* Be human readable.
* Be machine parsable.

* Be easy for sleepy ops folks to figure out why things are pear-shaped at 3:30AM using standard UNIXy tools
like tail and grep.

2.1. Dropwizard Core 23

http://logback.qos.ch/
http://www.slf4j.org/

Dropwizard Documentation, Release 0.8.6

The logging output looks like this:

TRACE [2010-04-06 06:42:35,271] com.example.dw.Thing: Contemplating doing a thing.
DEBUG [2010-04-06 06:42:35,274] com.example.dw.Thing: About to do a thing.
INFO [2010-04-06 06:42:35,274] com.example.dw.Thing: Doing a thing
WARN [2010-04-06 06:42:35,275] com.example.dw.Thing: Doing a thing

ERROR [2010-04-06 06:42:35,275] com.example.dw.Thing: This may get ugly.

! java.lang.RuntimeException: oh noes!

! at com.example.dw.Thing.run(Thing. java:16)
|

A few items of note:
* All timestamps are in UTC and ISO 8601 format.

* You can grep for messages of a specific level really easily:

’tail -f dw.log | grep '~“WARN'

* You can grep for messages from a specific class or package really easily:

’tail -f dw.log | grep 'com.example.dw.Thing'

* You can even pull out full exception stack traces, plus the accompanying log message:

’tail -f dw.log | grep -B 1 '"~\!'

» The ! prefix does not apply to syslog appenders, as stack traces are sent separately from the main message.
Instead, 7 is used (this is the default value of the SyslogAppender that comes with Logback). This can be
configured with the stackTracePrefix option when defining your appender.

Configuration

You can specify a default logger level and even override the levels of other loggers in your YAML configuration file:

Logging settings.
logging:

The default level of all loggers. Can be OFF, ERROR, WARN, INFO, DEBUG, TRACE, or,
—ALL.
level: INFO

Logger-specific levels.
loggers:

Overrides the level of com.example.dw.Thing and sets it to DEBUG.
"com.example.dw.Thing": DEBUG

Console Logging

By default, Dropwizard applications log INFO and higher to STDOUT. You can configure this by editing the 1ogging
section of your YAML configuration file:

logging:
appenders:
- type: console

(continues on next page)

24 Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

threshold: WARN
target: stderr

In the above, we’re instead logging only WARN and ERROR messages to the STDERR device.

File Logging

Dropwizard can also log to an automatically rotated set of log files. This is the recommended configuration for your
production environment:

logging:
appenders:
- type: file
The file to which current statements will be logged.
currentLogFilename: ./logs/example.log

When the log file rotates, the archived log will be renamed to this and,_

—gzipped. The
%d 1s replaced with the previous day (yyyy-MM-dd). Custom rolling windows can,,

—be created
by passing a SimpleDateFormat—-compatible format as an argument: "$d{yyyy—-MM-

—dd-hh}".
archivedLogFilenamePattern: ./logs/example-%d.log.gz

The number of archived files to keep.
archivedFileCount: 5

The timezone used to format dates. HINT: USE THE DEFAULT, UTC.
timeZone: UTC

Syslog Logging

Finally, Dropwizard can also log statements to syslog.

Note: Because Java doesn’t use the native syslog bindings, your syslog server must have an open network socket.

logging:

appenders:
- type: syslog
The hostname of the syslog server to which statements will be sent.
N.B.: If this is the local host, the local syslog instance will need to be_
—configured to
listen on an inet socket, not just a Unix socket.
host: localhost

The syslog facility to which statements will be sent.
facility: localO

You can combine any number of different appenders, including multiple instances of the same appender with
different configurations:

2.1. Dropwizard Core 25

Dropwizard Documentation, Release 0.8.6

logging:

Permit DEBUG, INFO, WARN and ERROR messages to be logged by appenders.
level: DEBUG

appenders:
Log warnings and errors to stderr
- type: console
threshold: WARN
target: stderr

Log info, warnings and errors to our apps' main log.
Rolled over daily and retained for 5 days.
- type: file
threshold: INFO
currentLogFilename: ./logs/example.log
archivedLogFilenamePattern: ./logs/example-%d.log.gz
archivedFileCount: 5

Log debug messages, info, warnings and errors to our apps' debug log.
Rolled over hourly and retained for 6 hours
- type: file
threshold: DEBUG
currentLogFilename: ./logs/debug.log
archivedLogFilenamePattern: ./logs/debug-%d{yyyy-MM-dd-hh}.log.gz
archivedFileCount: 6

2.1.12 Testing Applications

All of Dropwizard’s APIs are designed with testability in mind, so even your applications can have unit tests:

public class MyApplicationTest {
private final Environment environment = mock (Environment.class);
private final JerseyEnvironment jersey = mock (JerseyEnvironment.class);
private final MyApplication application = new MyApplication();
private final MyConfiguration config = new MyConfiguration () ;

@Before

public void setup () throws Exception {
config.setMyParam ("yay") ;
when (environment. jersey ()) .thenReturn (jersey);

@Test
public void buildsAThingResource () throws Exception {
application.run (config, environment) ;

verify (jersey) .register (isA (ThingResource.class));

We highly recommend Mockito for all your mocking needs.

26 Chapter 2. User Manual

http://code.google.com/p/mockito/

Dropwizard Documentation, Release 0.8.6

2.1.13 Banners

We think applications should print out a big ASCII art banner on startup. Yours should, too. It’s fun. Just add a
banner.txt classto src/main/resources and it’ll print it out when your application starts:

INFO [2011-12-09 21:56:37,209] io.dropwizard.cli.ServerCommand: Starting hello-world

dp
88
.d8888b. dp. .dP .d8888b. 88d8b.d8b. 88d888b. 88 .d8888b.
88oo000d8 8bd8' 88' "88 88'°88'°88 88' 88 88 88oo00o0d8
88.d88b. 88. .88 88 88 88 88. .88 88 88.
©88888p' dpP' “dP "88888P8 dP dP dP 88Y888P' dP "88888P'
88
dp

INFO [2011-12-09 21:56:37,214] org.eclipse.jetty.server.Server: jetty-7.6.0

We could probably make up an argument about why this is a serious devops best practice with high ROI and an Agile
Tool, but honestly we just enjoy this.

We recommend you use TAAG for all your ASCII art banner needs.

2.1.14 Resources

Unsurprisingly, most of your day-to-day work with a Dropwizard application will be in the resource classes, which
model the resources exposed in your RESTful API. Dropwizard uses Jersey for this, so most of this section is just
re-hashing or collecting various bits of Jersey documentation.

Jersey is a framework for mapping various aspects of incoming HTTP requests to POJOs and then mapping various
aspects of POJOs to outgoing HTTP responses. Here’s a basic resource class:

@Path ("/{user}/notifications™")

@Produces (MediaType.APPLICATION_JSON)

@Consumes (MediaType.APPLICATION_JSON)

public class NotificationsResource ({
private final NotificationStore store;

public NotificationsResource (NotificationStore store) {

this.store = store;
}
@QGET
public NotificationList fetch (@PathParam("user") LongParam userld,
@QueryParam("count") @DefaultValue ("20") IntParam
—~count) {
final List<Notification> notifications = store.fetch(userId.get (), count.
—get ());
if (notifications != null) {

return new NotificationList (userId, notifications);

}
throw new WebApplicationException (Status.NOT_FOUND) ;

@POST
public Response add(@PathParam("user") LongParam userlId,
@vValid Notification notification) {

(continues on next page)

2.1. Dropwizard Core 27

http://patorjk.com/software/taag/
http://jersey.java.net/

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

final long id = store.add(userId.get (), notification);
return Response.created (UriBuilder.fromResource (NotificationResource.class)
.build(userId.get (), id))
Lbuild();

This class provides a resource (a user’s list of notifications) which responds to GET and POST requests to / {user}/
notifications, providing and consuming application/ json representations. There’s quite a lot of func-
tionality on display here, and this section will explain in detail what’s in play and how to use these features in your
application.

Paths

Important: Every resource class must have a @Path annotation.

The @Path annotation isn’t just a static string, it’s a URI Template. The {user} part denotes a named variable, and
when the template matches a URI the value of that variable will be accessible via @PathParam-annotated method
parameters.

For example, an incoming request for /1001 /notifications would match the URI template, and the value
"1001" would be available as the path parameter named user.

If your application doesn’t have a resource class whose @Path URI template matches the URI of an incoming request,
Jersey will automatically returna 404 Not Found to the client.

Methods

Methods on a resource class which accept incoming requests are annotated with the HTTP methods they handle:
QGET, @POST, @PUT, GDELETE, GHEAD, COPTIONS, GPATCH.

Support for arbitrary new methods can be added via the @Ht t pMethod annotation. They also must to be added to
the list of allowed methods. This means, by default, methods such as CONNECT and TRACE are blocked, and will
returna 405 Method Not Allowed response.

If a request comes in which matches a resource class’s path but has a method which the class doesn’t support, Jersey
will automatically return a 405 Method Not Allowed to the client.

The return value of the method (in this case, a NotificationList instance) is then mapped to the negotiated
media type this case, our resource only supports JSON, and so the NotificationList is serialized to JSON using
Jackson.

Metrics

Every resource method can be annotated with @Timed, @Metered, and @ExceptionMetered. Dropwizard
augments Jersey to automatically record runtime information about your resource methods.

Parameters

The annotated methods on a resource class can accept parameters which are mapped to from aspects of the incoming
request. The *Param annotations determine which part of the request the data is mapped, and the parameter type
determines how the data is mapped.

28 Chapter 2. User Manual

http://tools.ietf.org/html/draft-gregorio-uritemplate-07

Dropwizard Documentation, Release 0.8.6

For example:

e A @PathParam ("user")-annotated St ring takes the raw value from the user variable in the matched
URI template and passes it into the method as a String.

* A @QueryParam("count")-annotated IntParam parameter takes the first count value from the re-
quest’s query string and passes it as a String to IntParam’s constructor. IntParam (and all other
io.dropwizard. jersey.params. x classes) parses the string as an Integer, returning a 400 Bad
Request if the value is malformed.

* A @FormParam("name") -annotated Set<String> parameter takes all the name values from a posted
form and passes them to the method as a set of strings.

What’s noteworthy here is that you can actually encapsulate the vast majority of your validation logic using specialized
parameter objects. See AbstractParam for details.

Request Entities

If you’re handling request entities (e.g., an application/json object on a PUT request), you can model this as a
parameter without a «Param annotation. In the example code, the add method provides a good example of this:

@POST
public Response add(@PathParam("user") LongParam userld,
@Valid Notification notification) {
final long id = store.add(userId.get (), notification);

return Response.created (UriBuilder.fromResource (NotificationResource.class)
.build(userId.get (), id)
.build();

Jersey maps the request entity to any single, unbound parameter. In this case, because the resource is annotated with
@Consumes (MediaType.APPLICATION_JSON), it uses the Dropwizard-provided Jackson support which, in
addition to parsing the JSON and mapping it to an instance of Notification, also runs that instance through
Dropwizard’s Validation.

If the deserialized Not i fication isn’t valid, Dropwizard returns a 422 Unprocessable Entity response to
the client.

Note: If your request entity parameter isn’t annotated with @Valid, it won’t be validated.

Media Types

Jersey also provides full content negotiation, so if your resource class consumes application/ json but the client
sends a text/plain entity, Jersey will automatically reply with a 406 Not Acceptable. Jersey’s even smart
enough to use client-provided g-values in their Accept headers to pick the best response content type based on what
both the client and server will support.

Responses

If your clients are expecting custom headers or additional information (or, if you simply desire an additional degree of
control over your responses), you can return explicitly-built Response objects:

return Response.noContent () .language (Locale.GERMAN) .build() ;

2.1. Dropwizard Core 29

Dropwizard Documentation, Release 0.8.6

In general, though, we recommend you return actual domain objects if at all possible. It makes resting resources much
easier.

Error Handling
If your resource class unintentionally throws an exception, Dropwizard will log that exception (including stack traces)
and return a terse, safe text /plain 500 Internal Server Error response.

If your resource class needs to return an error to the client (e.g., the requested record doesn’t exist), you have two
options: throw a subclass of Exception or restructure your method to return a Response.

If at all possible, prefer throwing Except ion instances to returning Re sponse objects.
If you throw a subclass of WebApplicationException jersey will map that to a defined response.

If you want more control, you can also declare JerseyProviders in your Environment to map Exceptions
to certain responses by calling JerseyEnvironment#register (Object) with an implementation of
javax.ws.rs.ext.ExceptionMapper. e.g. Your resource throws an InvalidArgumentException, but the response would
be 400, bad request.

URlIs
While Jersey doesn’t quite have first-class support for hyperlink-driven applications, the provided UriBuilder
functionality does quite well.

Rather than duplicate resource URIS, it’s possible (and recommended!) to initialize a UriBuilder with the path
from the resource class itself:

UriBuilder. fromResource (UserResource.class) .build(user.getId());

Testing

As with just about everything in Dropwizard, we recommend you design your resources to be testable. Dependencies
which aren’t request-injected should be passed in via the constructor and assigned to final fields.

Testing, then, consists of creating an instance of your resource class and passing it a mock. (Again: Mockito.)

public class NotificationsResourceTest ({
private final NotificationStore store = mock (NotificationStore.class);
private final NotificationsResource resource = new NotificationsResource (store);

@Test
public void getsReturnNotifications() {
final List<Notification> notifications = mock (List.class);
when (store.fetch (1, 20)).thenReturn(notifications);
final NotificationList list = resource.fetch (new LongParam("1"), new IntParam
(*}lIZOH));

assertThat (list.getUserId(),
is (1L));

assertThat (list.getNotifications (),
is(notifications));

30 Chapter 2. User Manual

http://code.google.com/p/mockito/

Dropwizard Documentation, Release 0.8.6

Caching

Adding a Cache-Control statement to your resource class is simple with Dropwizard:

@GET
@CacheControl (maxAge = 6, maxAgeUnit = TimeUnit.HOURS)
public String getCachableValue () {

return "yay";

The @CacheControl annotation will take all of the parameters of the Cache-Control header.

2.1.15 Representations
Representation classes are classes which, when handled to various Jersey MessageBodyReader and

MessageBodyWriter providers, become the entities in your application’s API. Dropwizard heavily favors JSON,
but it’s possible to map from any POJO to custom formats and back.

Basic JSON

Jackson is awesome at converting regular POJOs to JSON and back. This file:

public class Notification {
private String text;

public Notification (String text) {
this.text = text;

@JsonProperty
public String getText () {
return text;

@JsonProperty
public void setText (String text) {
this.text = text;

gets converted into this JSON:

{
"text": "hey it's the value of the text field"

If, at some point, you need to change the JSON field name or the Java field without affecting the other, you can add an
explicit field name to the @ JsonProperty annotation.

If you prefer immutable objects rather than JavaBeans, that’s also doable:

public class Notification {
private final String text;

@JsonCreator

(continues on next page)

2.1. Dropwizard Core 31

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

public Notification (@JsonProperty ("text") String text) {
this.text = text;

@JsonProperty ("text")
public String getText () {
return text;

Advanced JSON

Not all JSON representations map nicely to the objects your application deals with, so it’s sometimes necessary to use
custom serializers and deserializers. Just annotate your object like this:

@JsonSerialize (using=FunkySerializer.class)
@JsonDeserialize (using=FunkyDeserializer.class)
public class Funky {

//

Then make a FunkySerializer class which implements JsonSerializer<Funky> and a
FunkyDeserializer class which implements JsonDeserializer<Funky>.

snake_case

A common issue with JSON is the disagreement between camelCase and snake_case field names. Java and
Javascript folks tend to like came 1Case; Ruby, Python, and Perl folks insist on snake_case. To make Dropwizard
automatically convert field names to snake_case (and back), just annotate the class with @JsonSnakeCase:

@JsonSnakeCase
public class Person {
private final String firstName;

@JsonCreator

public Person (@JsonProperty String firstName) {
this.firstName = firstName;

}

@JsonProperty

public String getFirstName () {
return firstName;

This gets converted into this JSON:

{

"first_name": "Coda"

32 Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

Validation

Like Configuration, you can add validation annotations to fields of your representation classes and validate them. If
we’re accepting client-provided Person objects, we probably want to ensure that the name field of the object isn’t
null or blank. We can do this as follows:

public class Person {

@NotEmpty // ensure that name isn't null or blank
private final String name;

@JsonCreator
public Person (@JsonProperty ("name") String name) {
this.name = name;

@JsonProperty ("name")
public String getName () {
return name;

Then, in our resource class, we can add the @Valid annotation to the Person annotation:

@PUT
public Response replace (@Valid Person person) {

/7

If the name field is missing, Dropwizard will return a text/plain 422 Unprocessable Entity response
detailing the validation errors:

* name may not be empty

Advanced

More complex validations (for example, cross-field comparisons) are often hard to do using declarative annotations.
As an emergency maneuver, add the @ValidationMethod to any boolean-returning method which begins with
is:

@ValidationMethod (message="may not be Coda")
public boolean isNotCoda () {
return ! ("Coda".equals (name)) ;

Note: Due to the rather daft JavaBeans conventions, the method must begin with is (e.g.,
#isvalidPortRange (). This is a limitation of Hibernate Validator, not Dropwizard.

Streaming Output

If your application happens to return lots of information, you may get a big performance and efficiency bump by using
streaming output. By returning an object which implements Jersey’s St reamingOutput interface, your method

2.1. Dropwizard Core 33

Dropwizard Documentation, Release 0.8.6

can stream the response entity in a chunk-encoded output stream. Otherwise, you’ll need to fully construct your return
value and then hand it off to be sent to the client.

HTML Representations

For generating HTML pages, check out Dropwizard’s views support.

Custom Representations

Sometimes, though, you’ve got some wacky output format you need to produce or consume and no amount of arguing
will make JSON acceptable. That’s unfortunate but OK. You can add support for arbitrary input and output for-
mats by creating classes which implement Jersey’s MessageBodyReader<T> and MessageBodyWriter<T>
interfaces. (Make sure they’re annotated with @Provider and @Produces ("text/gibberish") or
@Consumes ("text/gibberish").) Once you're done, just add instances of them (or their classes if they depend
on Jersey’s @Context injection) to your application’s Environment on initialization.

Jersey filters

There might be cases when you want to filter out requests or modify them before they reach your Resources. Jersey has
arich api for filters and interceptors that can be used directly in Dropwizard. You can stop the request from reaching
your resources by throwing a WebApplicationException. Alternatively, you can use filters to modify inbound
requests or outbound responses.

@Provider
public class DateNotSpecifiedFilter implements ContainerRequestFilter {
@Override
public void filter (ContainerRequestContext requestContext) throws IOException {
String dateHeader = requestContext.getHeaderString (HttpHeaders.DATE) ;

if (dateHeader == null) {
Exception cause = new IllegalArgumentException ("Date Header was not,,
—specified");
throw new WebApplicationException (cause, Response.Status.BAD REQUEST) ;

This example filter checks the request for the “Date” header, and denies the request if was missing. Otherwise, the
request is passed through.

Filters can be dynamically bound to resource methods using DynamicFeature:

@Provider
public class DateRequiredFeature implements DynamicFeature {
@Override
public void configure (ResourceInfo resourcelnfo, FeatureContext context) {

if (resourceInfo.getResourceMethod () .getAnnotation (DateRequired.class) !=_

context.register (DateNotSpecifiedFilter.class);

34 Chapter 2. User Manual

http://jersey.java.net/documentation/latest/filters-and-interceptors.html
http://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html

Dropwizard Documentation, Release 0.8.6

The DynamicFeature is invoked by the Jersey runtime when the application is started. In this example, the feature
checks for methods that are annotated with @DateRequired and registers the DateNotSpecified filter on
those methods only.

You typically register the feature in your Application class, like so:

environment. jersey () .register (DateRequiredFeature.class);

Servlet filters

Another way to create filters is by creating servlet filters. They offer a way to to register filters that apply both to servlet
requests as well as resource requests. Jetty comes with a few bundled filters which may already suit your needs. If you
want to create your own filter, this example demonstrates a servlet filter analogous to the previous example:

public class DateNotSpecifiedServletFilter implements javax.servlet.Filter ({
// Other methods in interface ommited for brevity

@Override
public void doFilter (ServletRequest request, ServletResponse response,
—FilterChain chain) throws IOException, ServletException {
if (request instanceof HttpServletRequest) {

String dateHeader = ((HttpServletRequest) request) .getHeader (HttpHeaders.
<DATE) ;
if (dateHeader == null) {
chain.doFilter (request, response); // This signals that the request,
—should pass this filter
} else {
HttpServletResponse httpResponse = (HttpServletResponse) response;

httpResponse.setStatus (HttpStatus.BAD_REQUEST_400) ;
httpResponse.getWriter () .print ("Date Header was not specified");

This servlet filter can then be registered in your Application class by wrapping itin FilterHolder and adding it to
the application context together with a specification for which paths this filter should active. Here’s an example:

environment.servlets () .addFilter ("DateHeaderServletFilter", new,
—DateHeaderServletFilter ())
.addMappingForUrlPatterns (EnumSet.of (DispatcherType.REQUEST),

[

—~true, "/+");

2.1.16 How it’s glued together

When your application starts up, it will spin up a Jetty HTTP server, see DefaultServerFactory. This server
will have two handlers, one for your application port and the other for your admin port. The admin handler creates
and registers the AdminServlet. This has a handle to all of the application healthchecks and metrics via the
ServletContext.

The application port has an HttpServlet as well, this is composed of DropwizardResourceConfig, which
is an extension of Jersey’s resource configuration that performs scanning to find root resource and provider
classes. Ultimately when you call env. jersey () .register (new SomeResource ()), you are adding to

2.1. Dropwizard Core 35

http://www.eclipse.org/jetty/documentation/current/advanced-extras.html

Dropwizard Documentation, Release 0.8.6

the DropwizardResourceConfig. This config is a jersey Application, so all of your application resources
are served from one Servlet

DropwizardResourceConfig is where the various ResourceMethodDispatchAdapter are registered to enable
the following functionality:

* Resource method requests with @Timed, @Metered, @ExceptionMetered are delegated to special dis-
patchers which decorate the metric telemetry

* Resources that return Guava Optional are unboxed. Present returns underlying type, and non present 404s

» Resource methods that are annotated with @CacheControl are delegated to a special dispatcher that decorates
on the cache control headers

» Enables using Jackson to parse request entities into objects and generate response entities from objects, all while
performing validation

2.2 Dropwizard Client

The dropwizard-client module provides you with two different performant, instrumented HTTP
clients so you can integrate your service with other web services: Apache HitpClient and Jersey
Client.

2.2.1 Apache HttpClient

The underlying library for dropwizard-client is Apache’s HttpClient, a full-featured, well-tested HTTP client
library.

To create a managed, instrumented Ht t pC1ient instance, your configuration class needs an http client configuration
instance:

public class ExampleConfiguration extends Configuration {
@valid
@NotNull
private HttpClientConfiguration httpClient = new HttpClientConfiguration();

@JsonProperty ("httpClient")
public HttpClientConfiguration getHttpClientConfiguration() {
return httpClient;

Then, in your application’s run method, create a new HttpClientBuilder:

@Override
public void run (ExampleConfiguration config,
Environment environment) {
final HttpClient httpClient = new HttpClientBuilder (environment) .using (config.
—getHttpClientConfiguration())
Jouild() ;
environment. jersey () .register (new ExternalServiceResource (httpClient));

36 Chapter 2. User Manual

http://hc.apache.org/httpcomponents-core-4.3.x/index.html

Dropwizard Documentation, Release 0.8.6

Metrics
Dropwizard’s Ht t pClientBuilder actually gives you an instrumented subclass which tracks the following pieces
of data:

org.apache.http.conn.ClientConnectionManager.available—-connections The number the
number idle connections ready to be used to execute requests.

org.apache.http.conn.ClientConnectionManager.leased—-connections The number of per-
sistent connections currently being used to execut requests.

org.apache.http.conn.ClientConnectionManager.max—connections The maximum number of
allowed connections.

org.apache.http.conn.ClientConnectionManager.pending—connections The number of con-
nection requests being blocked awaiting a free connection

org.apache.http.client.HttpClient.get—requests The rate at which GET requests are being sent.

org.apache.http.client.HttpClient.post-requests The rate at which POST requests are being
sent.

org.apache.http.client.HttpClient.head-requests The rate at which HEAD requests are being
sent.

org.apache.http.client.HttpClient.put—requests The rate at which PUT requests are being sent.

org.apache.http.client.HttpClient.delete-requests The rate at which DELETE requests are be-
ing sent.

org.apache.http.client.HttpClient.options—requests The rate at which OPTIONS requests are
being sent.

org.apache.http.client.HttpClient.trace—-requests The rate at which TRACE requests are being
sent.

org.apache.http.client.HttpClient.connect—-requests The rate at which CONNECT requests are
being sent.

org.apache.http.client.HttpClient .move-requests The rate at which MOVE requests are being
sent.

org.apache.http.client.HttpClient.patch-requests The rate at which PATCH requests are being
sent.

org.apache.http.client.HttpClient.other—-requests The rate at which requests with none of the
above methods are being sent.

Note: The naming strategy for the metrics associated requests is configurable. Specifically, the last part e.g. get-
requests. What is displayed is HttpClientMetricNameStrategies.METHOD_ONLY, you can also include
the host via HttpClientMetricNameStrategies.HOST_AND_METHOD or a url without query string via
HttpClientMetricNameStrategies.QUERYLESS_URL_AND_METHOD

2.2.2 Jersey Client

If HttpClient is too low-level for you, Dropwizard also supports Jersey’s Client API. Jersey’s Client allows you to
use all of the server-side media type support that your service uses to, for example, deserialize application/json
request entities as POJOs.

2.2. Dropwizard Client 37

http://hc.apache.org/httpcomponents-core-4.3.x/index.html
https://jersey.java.net/documentation/1.18/client-api.html

Dropwizard Documentation, Release 0.8.6

To create a managed, instrumented JerseyClient instance, your configuration class needs an jersey client config-
uration instance:

public class ExampleConfiguration extends Configuration {
@valid

@NotNull
private JerseyClientConfiguration httpClient = new JerseyClientConfiguration();

@JsonProperty ("httpClient")
public JerseyClientConfiguration getJerseyClientConfiguration() {

return httpClient;

Then, in your service’s run method, create a new JerseyClientBuilder:

@Override
public void run (ExampleConfiguration config,
Environment environment) {

final Client client = new JerseyClientBuilder (environment) .using(config.

—getJerseyClientConfiguration())
.build(getName ()) ;

environment. jersey () .register (new ExternalServiceResource (client));

Configuration

The Client that Dropwizard creates deviates from the Jersey Client Configuration defaults. The default, in Jersey, is
for a client to never timeout reading or connecting in a request, while in Dropwizard, the default is 500 milliseconds.

There are a couple of ways to change this behavior. The recommended way is to modify the YAML configuration.
Alternatively, set the properties on the JerseyClientConfiguration, which will take affect for all built clients.
On a per client basis, the configuration can be changed through utilizing the property method and, in this case, the
Jersey Client Properties can be used.

Warning: Do not try to change Jersey properties using Jersey Client Properties through the
withProperty (String propertyName, Object propertyValue)

method on the JerseyClientBuilder, because by default it’s configured by Dropwizard’s
HttpClientBuilder, so the Jersey properties are ignored.

2.3 Dropwizard JDBI

The dropwizard-jdbi module provides you with managed access to JDBI, a flexible and modular
library for interacting with relational databases via SQL.

2.3.1 Configuration

To create a managed, instrumented DBI instance, your configuration class needs a DataSourceFactory instance:

38 Chapter 2. User Manual

https://jersey.java.net/apidocs/2.19/jersey/org/glassfish/jersey/client/ClientProperties.html

Dropwizard Documentation, Release 0.8.6

public class ExampleConfiguration extends Configuration {
@valid
@NotNull
private DataSourceFactory database = new DataSourceFactory();

@JsonProperty ("database")
public DataSourceFactory getDataSourceFactory () {
return database;

Then, in your service’s run method, create a new DBIFactory:

@Override
public void run (ExampleConfiguration config, Environment environment) {
final DBIFactory factory = new DBIFactory();
final DBI jdbi = factory.build(environment, config.getDataSourceFactory/(),
—"postgresqgl");
final UserDAO dao = jdbi.onDemand (UserDAO.class) ;
environment. jersey () .register (new UserResource (dao)) ;

This will create a new managed connection pool to the database, a health check for connectivity to the database, and
anew DBI instance for you to use.

Your service’s configuration file will then look like this:

database:
the name of your JDBC driver
driverClass: org.postgresqgl.Driver

the username
user: pg-user

the password
password: 1AMsOOperSecrEET

the JDBC URL
url: jdbc:postgresgl://db.example.com/db-prod

any properties specific to your JDBC driver:
properties:
charSet: UTF-8

the maximum amount of time to wait on an empty pool before throwing an exception
maxWaitForConnection: 1s

the SQL query to run when validating a connection's liveness
validationQuery: "/x MyService Health Check %/ SELECT 1"

the timeout before a connection validation queries fail
validationQueryTimeout: 3s

the minimum number of connections to keep open
minSize: 8

the maximum number of connections to keep open
maxSize: 32

(continues on next page)

2.3. Dropwizard JDBI 39

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

whether or not idle connections should be validated
checkConnectionWhileIdle: false

the amount of time to sleep between runs of the idle connection validation,
—abandoned cleaner and idle pool resizing
evictionInterval: 10s

the minimum amount of time an connection must sit idle in the pool before it is,,
—eligible for eviction
minIdleTime: 1 minute

2.3.2 Usage

We highly recommend you use JDBI’s SQL Objects API, which allows you to write DAO classes as interfaces:

public interface MyDAO {
@SglUpdate ("create table something (id int primary key, name varchar (100))")
void createSomethingTable () ;

@SglUpdate ("insert into something (id, name) values (:id, :name)")
void insert (@Bind("id") int id, @Bind("name") String name);
@SqglQuery ("select name from something where id = :id")

String findNameById (@Bind ("id") int id);

final MyDAO dao = database.onDemand (MyDAO.class);

This ensures your DAO classes are trivially mockable, as well as encouraging you to extract mapping code (e.g.,
ResultSet ->domain objects) into testable, reusable classes.

2.3.3 Exception Handling
By adding the DBIExceptionsBundle to your application, Dropwizard will automatically unwrap any thrown

SQLException or DBIException instances. This is critical for debugging, since otherwise only the common
wrapper exception’s stack trace is logged.

2.3.4 Prepended Comments

If you’re using JDBI’s SQL Objects API (and you should be), dropwizard-jdbi will automatically prepend the
SQL object’s class and method name to the SQL query as an SQL comment:

/+ com.example.service.dao.UserDAO.findByName */
SELECT id, name, email

FROM users

WHERE name = 'Coda';

This will allow you to quickly determine the origin of any slow or misbehaving queries.

40 Chapter 2. User Manual

http://jdbi.org/sql_object_overview/
http://jdbi.org/sql_object_overview/

Dropwizard Documentation, Release 0.8.6

2.3.5 Guava Support

dropwizard-jdbi supports Optional<T> arguments and ImmutableList<T> and ImmutableSet<T>
query results.

2.3.6 Joda Time Support

dropwizard-jdbi supports joda-time DateTime arguments and DateTime fields in query results.

2.4 Dropwizard Migrations

The dropwizard-migrations module provides you with a wrapper for Liquibase database refac-
toring.

2.4.1 Configuration

Like Dropwizard JDBI, your configuration class needs a DataSourceFactory instance:

public class ExampleConfiguration extends Configuration {
@valid
@NotNull
private DataSourceFactory database = new DataSourceFactory();

@JsonProperty ("database")

public DataSourceFactory getDataSourceFactory () {
return database;

}

2.4.2 Adding The Bundle

Then, in your application’s initialize method, add a new MigrationsBundle subclass:

@Override
public void initialize (Bootstrap<ExampleConfiguration> bootstrap) f{
bootstrap.addBundle (new MigrationsBundle<ExampleConfiguration> () {
@Override
public DataSourceFactory getDataSourceFactory (ExampleConfiguration
—configuration) {
return configuration.getDataSourceFactory();
}
)i

2.4.3 Defining Migrations

Your database migrations are stored in your Dropwizard project, in src/main/resources/migrations.xml.
This file will be packaged with your application, allowing you to run migrations using your application’s command-
line interface.

For example, to create a new people table, I might create an initial migrations.xml like this:

2.4. Dropwizard Migrations 41

Dropwizard Documentation, Release 0.8.6

<?xml version="1.0" encoding="UTF-8"?>

<databaseChangeLog
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.1.xsd">

<changeSet id="1" author="codahale">
<createTable tableName="people">
<column name="id" type="bigint" autolncrement="true">
<constraints primaryKey="true" nullable="false"/>
</column>
<column name="fullName" type="varchar (255)">
<constraints nullable="false"/>
</column>
<column name="jobTitle" type="varchar (255)"/>
</createTable>
</changeSet>
</databaseChangeLog>

For more information on available database refactorings, check the Liquibase documentation.

2.4.4 Checking Your Database’s State

To check the state of your database, use the db status command:

java —-jar hello-world.jar db status helloworld.yml

2.4.5 Dumping Your Schema

If your database already has an existing schema and you’d like to pre-seed your migrations.xml document, you
can run the db dump command:

java —jar hello-world.jar db dump helloworld.yml

This will output a Liquibase change log with a change set capable of recreating your database.

2.4.6 Tagging Your Schema

To tag your schema at a particular point in time (e.g., to make rolling back easier), use the db tag command:

java —jar hello-world.jar db tag helloworld.yml 2012-10-08-pre-user-move

2.4.7 Migrating Your Schema

To apply pending change sets to your database schema, run the db migrate command:

java —jar hello-world.jar db migrate helloworld.yml

42 Chapter 2. User Manual

http://www.liquibase.org
http://www.liquibase.org

Dropwizard Documentation, Release 0.8.6

Warning: This will potentially make irreversible changes to your database. Always check the pending DDL
scripts by using the ——dry-run flag first. This will output the SQL to be run to stdout.

Note: To apply only a specific number of pending change sets, use the ——count flag.

2.4.8 Rolling Back Your Schema

To roll back change sets which have already been applied, run the db rollback command. You will need to specify
either a tag, a date, or a number of change sets to roll back to:

java —jar hello-world.jar db rollback helloworld.yml --tag 2012-10-08-pre-user-move

Warning: This will potentially make irreversible changes to your database. Always check the pending DDL
scripts by using the ——dry—run flag first. This will output the SQL to be run to stdout.

2.4.9 Testing Migrations

To verify that a set of pending change sets can be fully rolled back, use the db test command, which will migrate
forward, roll back to the original state, then migrate forward again:

java —jar hello-world.jar db test helloworld.yml

Warning: Do not run this in production, for obvious reasons.

2.4.10 Preparing A Rollback Script

To prepare a rollback script for pending change sets before they have been applied, use the do prepare-rollback
command:

java —jar hello-world. jar db prepare-rollback helloworld.yml

This will output a DDL script to stdout capable of rolling back all unapplied change sets.

2.4.11 Generating Documentation

To generate HTML documentation on the current status of the database, use the db generate-docs command:

java -jar hello-world.jar db generate-docs helloworld.yml ~/db-docs/

2.4.12 Dropping All Objects

To drop all objects in the database, use the db drop—-all command:

2.4. Dropwizard Migrations 43

Dropwizard Documentation, Release 0.8.6

java —-jar hello-world.jar db drop-all --confirm-delete-everything helloworld.yml

Warning: You need to specify the ——confirm-delete-everything flag because this command deletes
everything in the database. Be sure you want to do that first.

2.4.13 Fast-Forwarding Through A Change Set

To mark a pending change set as applied (e.g., after having backfilled your migrations.xml with db dump), use
the db fast-forward command:

java —jar hello-world.jar db fast-forward helloworld.yml

This will mark the next pending change set as applied. You can also use the ——al1l flag to mark all pending change
sets as applied.

2.4.14 More Information

If you are using databases supporting multiple schemas like PostgreSQL, Oracle, or H2, you can use the optional
-—catalog and —-schema arguments to specify the database catalog and schema used for the Liquibase com-
mands.

For more information on available commands, either use the db —-help command, or for more detailed help on a
specific command, use db <cmd> —--help.

2.5 Dropwizard Hibernate

The dropwizard-hibernate module provides you with managed access to Hibernate, a powerful,
industry-standard object-relation mapper (ORM).

2.5.1 Configuration

To create a managed, instrumented SessionFactory instance, your configuration class needs a
DataSourceFactory instance:

public class ExampleConfiguration extends Configuration ({
@valid
@NotNull
private DataSourceFactory database = new DataSourceFactory();

@JsonProperty ("database")
public DataSourceFactory getDataSourceFactory () {
return database;

}

Then, add a HibernateBundle instance to your application class, specifying your entity classes and how to get a
DataSourceFactory from your configuration subclass:

44 Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

private final HibernateBundle<ExampleConfiguration> hibernate = new HibernateBundle
—<ExampleConfiguration> (Person.class) {

@Override

public DataSourceFactory getDataSourceFactory (ExampleConfiguration configuration)
- {

return configuration.getDataSourceFactory();
bi

@Override
public void initialize (Bootstrap<ExampleConfiguration> bootstrap) {
bootstrap.addBundle (hibernate) ;

@Override

public void run (ExampleConfiguration config, Environment environment) {
final UserDAO dao = new UserDAO (hibernate.getSessionFactory());
environment. jersey () .register (new UserResource (dao)) ;

This will create a new managed connection pool to the database, a health check for connectivity to the database, and
anew SessionFactory instance for you to use in your DAO classes.

Your application’s configuration file will then look like this:

database:
the name of your JDBC driver
driverClass: org.postgresqgl.Driver

the username
user: pg-user

the password
password: 1AMsOOperSecrEET

the JDBC URL
url: jdbc:postgresqgl://db.example.com/db-prod

any properties specific to your JDBC driver:
properties:
charSet: UTF-8
hibernate.dialect: org.hibernate.dialect.PostgreSQLDialect

the maximum amount of time to wait on an empty pool before throwing an exception
maxWaitForConnection: 1s

the SQL query to run when validating a connection's liveness
validationQuery: "/x MyApplication Health Check %/ SELECT 1"

the minimum number of connections to keep open
minSize: 8

the maximum number of connections to keep open
maxSize: 32

whether or not idle connections should be validated
checkConnectionWhileIdle: false

2.5. Dropwizard Hibernate 45

Dropwizard Documentation, Release 0.8.6

2.5.2 Usage

Data Access Objects

Dropwizard comes with AbstractDAO, a minimal template for entity-specific DAO classes. It contains type-safe
wrappers for most of SessionFactory’s common operations:

public class PersonDAO extends AbstractDAO<Person> {
public PersonDAO (SessionFactory factory) {
super (factory) ;

public Person findById(Long id) {
return get (id);

public long create (Person person) {
return persist (person) .getId();

public List<Person> findAll () {
return list (namedQuery ("com.example.helloworld.core.Person.findAll"));

Transactional Resource Methods

Dropwizard uses a declarative method of scoping transactional boundaries. Not all resource methods actually require
database access, so the @UnitOfWork annotation is provided:

@GET

@Timed

QUnitOfWork

public Person findPerson (@PathParam("id") LongParam id) {
return dao.findById(id.get());

This will automatically open a session, begin a transaction, call £indById, commit the transaction, and finally close
the session. If an exception is thrown, the transaction is rolled back.

Important: The Hibernate session is closed before your resource method’s return value (e.g., the Person from the
database), which means your resource method (or DAO) is responsible for initializing all lazily-loaded collections,
etc., before returning. Otherwise, you’ll get a LazyInitializationException thrown in your template (or
null values produced by Jackson).

2.5.3 Prepended Comments

Dropwizard automatically configures Hibernate to prepend a comment describing the context of all queries:

/+ load com.example.helloworld.core.Person #*/
select
personO_.id as id0_0_,

(continues on next page)

46 Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

personO_.fullName as fullNameO_0_,
personl_.jobTitle as jobTitleO_0_
from people personO_
where person(O_.id="?

This will allow you to quickly determine the origin of any slow or misbehaving queries.

2.6 Dropwizard Authentication

The dropwizard-auth client provides authentication using either HTTP Basic Authentication or
OAuth2 bearer tokens.

2.6.1 Authenticators

An authenticator is a strategy class which, given a set of client-provided credentials, possibly returns a principal (i.e.,
the person or entity on behalf of whom your service will do something).

Authenticators implement the Authenticator<C, P> interface, which has a single method:

public class SimpleAuthenticator implements Authenticator<BasicCredentials, User> {
@Override
public Optional<User> authenticate (BasicCredentials credentials) throws_
—AuthenticationException {
if ("secret".equals (credentials.getPassword())) {
return Optional.of (new User (credentials.getUsername()));

}

return Optional.absent ();

This authenticator takes basic auth credentials and if the client-provided password is secret, authenticates the client
as a User with the client-provided username.

If the password doesn’t match, an absent Opt ional is returned instead, indicating that the credentials are invalid.

Warning: It’s important for authentication services to not provide too much information in their errors. The
fact that a username or email has an account may be meaningful to an attacker, so the Authenticator inter-
face doesn’t allow you to distinguish between a bad username and a bad password. You should only throw an
AuthenticationException if the authenticator is unable to check the credentials (e.g., your database is
down).

Caching

Because the backing data stores for authenticators may not handle high throughput (an RDBMS or LDAP server, for
example), Dropwizard provides a decorator class which provides caching:

SimpleAuthenticator simpleAuthenticator = new SimpleAuthenticator();
CachingAuthenticator<BasicCredentials, User> cachingAuthenticator = new_
—CachingAuthenticator<> (
metricRegistry, simpleAuthenticator,
config.getAuthenticationCachePolicy());

2.6. Dropwizard Authentication 47

Dropwizard Documentation, Release 0.8.6

Dropwizard can parse Guava’s CacheBuilderSpec from the configuration policy, allowing your configuration file
to look like this:

authenticationCachePolicy: maximumSize=10000, expireAfterAccess=10m

This caches up to 10,000 principals with an LRU policy, evicting stale entries after 10 minutes.

2.6.2 Basic Authentication

The BasicAuthFactory enables HTTP Basic authentication, and requires an authenticator which takes instances
of BasicCredentials . Alsothe BasicAuthFactory needs to be parameterized with the type of the principal

the authenticator produces, here String:

@Override
public void run (ExampleConfiguration configuration,
Environment environment) {
environment. jersey () .register (AuthFactory.binder (new BasicAuthFactory<String> (new_

—ExampleAuthenticator (),
—"SUPER SECRET STUFFE",

—String.class)));
}

2.6.3 OAuth2

The OAuthFactory enables OAuth2 bearer-token authentication, and requires an authenticator which takes an
instance of String. Also the OAuthFactory needs to be parameterized with the type of the principal the authen-

ticator produces, here User:

@Override
public void run (ExampleConfiguration configuration,
Environment environment) {

environment. jersey () .register (AuthFactory.binder (new OAuthFactory<User> (new_
—ExampleAuthenticator (),
"SUPER,,
—SECRET STUFFE",
User.

—~class)));

}

2.6.4 Chained Factories

The ChainedAuthFactory enables usage of various authentication factories at the same time.

@Override
public void run (ExampleConfiguration configuration,
Environment environment) {
ChainedAuthFactory<User> chainedFactory = new ChainedAuthFactory<> (
new BasicAuthFactory<> (new ExampleBasicAuthenticator (), "SUPER SECRET

—~STUFF", User.class),

new OAuthFactory<> (new ExampleOAuthAuthenticator (), "SUPER SECRET STUFE", |

—User.class));

(continues on next page)

48 Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

environment. jersey () .register (AuthFactory.binder (chainedFactory));

For this to work properly, all chained factories must produce the same type of principal, here User.

2.6.5 Protecting Resources

To protect a resource, simply include an @Auth-annotated principal as one of your resource method parameters:

@GET
public SecretPlan getSecretPlan (RQAuth User user) {
return dao.findPlanForUser (user) ;

}

If there are no provided credentials for the request, or if the credentials are invalid, the provider will return a scheme-
appropriate 401 Unauthorized response without calling your resource method.

If you have a resource which is optionally protected (e.g., you want to display a logged-in user’s name but not require
login), set the required attribute of the annotation to false:

@GET

public HomepageView getHomepage (QAuth (required = false) User user) {
return new HomepageView (Optional.fromNullable (user));

}

If there is no authenticated principal, null is used instead, and your resource method is still called.

2.7 Dropwizard Forms

The dropwizard-forms module provides you with a support for multi-part forms via Jersey.

2.7.1 Adding The Bundle

Then, in your application’s initialize method, add a new MultiPartBundle subclass:

@Override

public void initialize (Bootstrap<ExampleConfiguration> bootstrap) {
bootstrap.addBundle (new MultiPartBundle());

}

2.7.2 More Information

For additional and more detailed documentation about the Jersey multi-part support, please refer to the documentation
in the Jersey User Guide and Javadoc.

2.8 Dropwizard Views

2.7. Dropwizard Forms 49

https://jersey.java.net/documentation/latest/media.html#multipart
https://jersey.java.net/apidocs/latest/jersey/org/glassfish/jersey/media/multipart/package-summary.html

Dropwizard Documentation, Release 0.8.6

The dropwizard-views-mustache & dropwizard-views-freemarker modules provides you
with simple, fast HTML views using either FreeMarker or Mustache.

To enable views for your Application, add the ViewBundle inthe initialize method of your Application class:

public void initialize (Bootstrap<MyConfiguration> bootstrap) {
bootstrap.addBundle (new ViewBundle<MyConfiguration>());

You can pass configuration through to view renderers by overriding getViewConfiguration:

public void initialize (Bootstrap<MyConfiguration> bootstrap) {
bootstrap.addBundle (new ViewBundle<MyConfiguration> () {
@Override
public Map<String, Map<String, String>> getViewConfiguration (MyConfiguration,
—config) {
return config.getViewRendererConfiguration();

)i

The returned map should have, for each extension (such as . ft1), a Map<String, String> describing how to
configure the renderer. Specific keys and their meanings can be found in the FreeMarker and Mustache documentation:

views:
ftl: strict_syntax: yes

Then, in your resource method, add a View class:

public class PersonView extends View {
private final Person person;

public PersonView (Person person) {
super ("person.ftl");
this.person = person;

public Person getPerson() {
return person;

person. ft1l is the path of the template relative to the class name. If this class was com.example.service.
PersonView, Dropwizard would then look for the file src/main/resources/com/example/service/
person.ftl.

If your template ends with . £t 1, it’ll be interpreted as a FreeMarker template. If it ends with .mustache, it’ll be
interpreted as a Mustache template.

Tip: Dropwizard Freemarker Views also support localized template files. It picks up the client’s locale from
their Accept-Language, so you can add a French template in person_fr.ftl or a Canadian template in
person_en_CA.ftl.

Your template file might look something like this:

50 Chapter 2. User Manual

http://FreeMarker.sourceforge.net/
http://FreeMarker.sourceforge.net/

Dropwizard Documentation, Release 0.8.6

<#-- @ftlvariable name="" type="com.example.views.PersonView" -->
<html>
<body>
<!-- calls getPerson() .getName () and sanitizes it -->
<hl>Hello, ${person.name?html}!</hl>
</body>
</html>

The @ftlvariable lets FreeMarker (and any FreeMarker IDE plugins you may be using) know that the root
objectis a com.example.views.PersonView instance. If you attempt to call a property which doesn’t exist on
PersonView — getConnectionPool (), for example — it will flag that line in your IDE.

Once you have your view and template, you can simply return an instance of your View subclass:

@Path (" /people/{id}")

@Produces (MediaType.TEXT_HTML)

public class PersonResource {
private final PersonDAO dao;

public PersonResource (PersonDAO dao) {
this.dao = dao;

}

@GET
public PersonView getPerson (@PathParam("id") String id) {
return new PersonView (dao.find (id)) ;

}

Tip: Jackson can also serialize your views, allowing you to serve both text/html and application/json
with a single representation class.

For more information on how to use FreeMarker, see the FreeMarker documentation.

For more information on how to use Mustache, see the Mustache and Mustache.java documentation.

2.9 Dropwizard & Scala
The dropwizard-scala module is how maintained and documented elsewhere.
2.10 Testing Dropwizard

The dropwizard-testing module provides you with some handy classes for testing your repre-
sentation classes and resource classes. It also provides a JUnit rule for full-stack testing of your
entire app.

2.10.1 Testing Representations

While Jackson’s JSON support is powerful and fairly easy-to-use, you shouldn’t just rely on eyeballing your rep-
resentation classes to ensure you're actually producing the API you think you are. By using the helper methods in

2.9. Dropwizard & Scala 51

http://FreeMarker.sourceforge.net/
http://mustache.github.com/mustache.5.html
https://github.com/spullara/mustache.java

Dropwizard Documentation, Release 0.8.6

FixtureHelpers you can add unit tests for serializing and deserializing your representation classes to and from JSON.

Let’s assume we have a Person class which your API uses as both a request entity (e.g., when writing via a PUT
request) and a response entity (e.g., when reading via a GET request):

public class Person {
private String name;
private String email;

private Person() {
// Jackson deserialization

public Person (String name, String email) {

this.name = name;
this.email = email;
}
@JsonProperty

public String getName () {
return name;

@JsonProperty

public void setName (String name) {
this.name = name;

}

@JsonProperty

public String getEmail () {
return email;

@JsonProperty
public void setEmail (String email) {
this.email = email;

// hashCode
// equals
// toString etc.

Fixtures

First, write out the exact JSON representation of a Person inthe src/test/resources/fixtures directory
of your Dropwizard project as person. json:

{
"name": "Luther Blissett",
"email": "lbGexample.com"

Testing Serialization

Next, write a test for serializing a Person instance to JSON:

52 Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

import static io.dropwizard.testing.FixtureHelpers. *;
import static org.assertj.core.api.Assertions.assertThat;
import io.dropwizard.jackson.Jackson;

import org.junit.Test;

import com.fasterxml. jackson.databind.ObjectMapper;

public class PersonTest {

private static final ObjectMapper MAPPER = Jackson.newObjectMapper () ;

@Test
public void serializesToJSON () throws Exception {
final Person person = new Person ("Luther Blissett", "lb@example.com");

final String expected = MAPPER.writeValueAsString(
MAPPER.readValue (fixture ("fixtures/person. json"), Person.class));

assertThat (MAPPER.writeValueAsString (person)) .isEqualTo (expected) ;

This test uses AssertJ assertions and JUnit to test that when a Person instance is serialized via Jackson it matches the
JSON in the fixture file. (The comparison is done on a normalized JSON string representation, so formatting doesn’t
affect the results.)

Testing Deserialization

Next, write a test for deserializing a Person instance from JSON:

import static io.dropwizard.testing.FixtureHelpers.*;
import static org.assertj.core.api.Assertions.assertThat;
import io.dropwizard. jackson.Jackson;

import org.junit.Test;

import com.fasterxml. jackson.databind.ObjectMapper;

public class PersonTest {

private static final ObjectMapper MAPPER = Jackson.newObjectMapper () ;

@Test

public void deserializesFromJSON () throws Exception {
final Person person = new Person ("Luther Blissett", "lb@example.com");
assertThat (MAPPER.readValue (fixture ("fixtures/person. json"), Person.class))

.isEqualTo (person) ;

This test uses Assert] assertions and JUnit to test that when a Person instance is deserialized via Jackson from the
specified JSON fixture it matches the given object.

2.10.2 Testing Resources

While many resource classes can be tested just by calling the methods on the class in a test, some resources lend them-
selves to a more full-stack approach. For these, use ResourceTestRule, which loads a given resource instance in
an in-memory Jersey server:

2.10. Testing Dropwizard 53

http://assertj.org/assertj-core-conditions.html
http://www.junit.org/
http://assertj.org/assertj-core-conditions.html
http://www.junit.org/

Dropwizard Documentation, Release 0.8.6

import static org.assertj.core.api.Assertions.assertThat;
import static org.mockito.Mockito.*;

public class PersonResourceTest {

private static final PeopleStore dao = mock (PeopleStore.class);

@ClassRule

public static final ResourceTestRule resources = ResourceTestRule.builder ()
.addResource (new PersonResource (dao))
.build();

private final Person person = new Person("blah", "blah@example.com");

@Before

public void setup () {

when (dao.fetchPerson (eq("blah"))) .thenReturn (person) ;

// we have to reset the mock after each test because of the
// @ClassRule, or use a (@Rule as mentioned below.
reset (dao) ;

@Test
public void testGetPerson() {
assertThat (resources.client () .target ("/person/blah") .request () .get (Person.
—class))
.isEqualTo (person) ;
verify(dao) .fetchPerson ("blah");

Instantiate a ResourceTestRule using its Builder and add the various resource instances you want to test via
ResourceTestRule.Builderf#addResource (Object). Use a @ClassRule annotation to have the rule
wrap the entire test class or the @Rule annotation to have the rule wrap each test individually (make sure to remove
static final modifier from resources).

In your tests, use #client (), which returns a Jersey Client instance to talk to and test your instances.

This doesn’t require opening a port, but ResourceTestRule tests will perform all the serialization, deserialization,
and validation that happens inside of the HTTP process.

This also doesn’t require a full integration test. In the above example, a mocked PeopleStore is passed to the
PersonResource instance to isolate it from the database. Not only does this make the test much faster, but it
allows your resource unit tests to test error conditions and edge cases much more easily.

Hint: You can trust PeopleStore works because you’ve got working unit tests for it, right?

Note that the in-memory Jersey test container does not support all features, such as the @Context injection used by
BasicAuthFactory and OAuthFactory. A different test container can be used via ResourceTestRule.
Builder#setTestContainerFactory (TestContainerFactory).

For example if you want to use the Grizzly HTTP server (which supports @Context injections) you need to add the
dependency for the Jersey Test Framework providers to your Maven POM and set GrizzlyTestContainerFactory* as
TestContainerFactory in your test classes.

54 Chapter 2. User Manual

https://jersey.java.net/documentation/latest/test-framework.html
https://grizzly.java.net/

Dropwizard Documentation, Release 0.8.6

<dependency>
<groupId>org.glassfish. jersey.test-framework.providers</groupId>
<artifactId>jersey-test-framework-provider—-grizzly2</artifactId>
<version>${ jersey.version}</version>
<scope>test</scope>
<exclusions>
<exclusion>
<groupId>javax.servlet</groupId>
<artifactId>javax.servlet-api</artifactId>
</exclusion>
<exclusion>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
</exclusion>
</exclusions>
</dependency>

public class ResourceTestWithGrizzly {
@ClassRule
public static final ResourceTestRule RULE = ResourceTestRule.builder ()
.setTestContainerFactory (new GrizzlyTestContainerFactory())
.addResource (new ExampleResource())
Jouild() ;

@Test
public void testResource () {
assertThat (RULE.getJerseyTest () .target ("/example") .request ()
.get (String.class))
.isEqualTo ("example");

2.10.3 Testing Client Implementations

In order to avoid circular dependencies in your projects or to speed up test runs, you can test your HTTP client code by
writing a JAX-RS resource as test double and let the DropwizardClientRule start and stop a simple Dropwizard
application containing your test doubles.

public class CustomClientTest {
@Path ("/ping")
public static class PingResource {
@GET
public String ping () {
return "pong";

@ClassRule
public final static DropwizardClientRule dropwizard = new_
—DropwizardClientRule (new PingResource());

@Test
public void shouldPing () throws IOException {
final URL url = new URL (dropwizard.baseUri () + "/ping");
final String response = new BufferedReader (new InputStreamReader (url.

openStream())) readline ()
(continues on next page)

2.10. Testing Dropwizard 55

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

assertEquals ("pong", response);

Hint: Of course you would use your HTTP client in the @Test method and not java.net.
URL#openStream ().

The DropwizardClientRule takes care of:
* Creating a simple default configuration.
* Creating a simplistic application.
¢ Adding a dummy health check to the application to suppress the startup warning.
* Adding your JAX-RS resources (test doubles) to the Dropwizard application.
* Choosing a free random port number (important for running tests in parallel).
* Starting the Dropwizard application containing the test doubles.

* Stopping the Dropwizard application containing the test doubles.

2.10.4 Integration Testing

It can be useful to start up your entire app and hit it with real HTTP requests during testing. This can be achieved
by adding DropwizardAppRule to your JUnit test class, which will start the app prior to any tests running and
stop it again when they’ve completed (roughly equivalent to having used @BeforeClass and @AfterClass).
DropwizardAppRule also exposes the app’s Configuration, Environment and the app object itself so that
these can be queried by the tests.

public class LoginAcceptanceTest {

@ClassRule
public static final DropwizardAppRule<TestConfiguration> RULE =
new DropwizardAppRule<TestConfiguration> (MyApp.class, ResourceHelpers.

—resourceFilePath ("my-app-config.yaml"));
@Test
public void loginHandlerRedirectsAfterPost () {
Client client = new JerseyClientBuilder (RULE.getEnvironment ()) .build("test
—~client");
Response response = client.target (
String.format ("http://localhost:%d/login", RULE.getLocalPort()))
.request ()
.post (Entity. json (loginForm()));
assertThat (response.getStatus ()) .isEqualTo (302);

2.11 Dropwizard Example, Step by Step

56 Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

The dropwizard-example module provides you with a working example of a dropwizard app

Open a terminal

Make sure you have maven installed

Make sure java home points at JDK 7

Make sure you have curl

mvn dependency:resolve

mvn clean compile install

mvn eclipse:eclipse -DdownloadSources=true

From eclipse, File —> Import —> Existing Project into workspace

java —-jar ~/git/dropwizard/dropwizard-example/target/dropwizard-example-0.
8.0-SNAPSHOT. jar db migrate example.yml

The above ran the liquibase migration in /src/main/resources/migrations.xml, creating the table schema

You can now start the app in your IDE by running Jjava -jar ~/git/dropwizard/
dropwizard-example/target/dropwizard-example—0.8.0-SNAPSHOT. jar db migrate
example.yml

Alternatively you can run this file in your IDE: com.example.helloworld.
HelloWorldApplication server example.yml

Insert a new person: curl -H "Content-Type: application/json" -X POST
-d '{"fullName":"Coda Hale", "jobTitle" : "Chief Wizard" }' http://
localhost:8080/people

Retrieve that person: curl http://localhost:8080/people/1
View the freemarker template: curl http://localhost:8080/people/l/view_freemarker

View the mustache template: curl http://localhost:8080/people/l/view_mustache

2.12 Dropwizard Configuration Reference

The dropwizard-configuration module provides you with a polymorphic configuration mecha-
nism, meaning that a particular section of your configuration file can be implemented using one or
more configuration classes.

To use this capability for your own configuration classes, create a top-level configuration interface or class that imple-
ments Discoverable and add the name of that class to META-INF/services/io.dropwizard. jackson.
Discoverable. Make sure to use Jackson polymorphic deserialization annotations appropriately.

@JsonTypeInfo (use = Id.NAME, include = As.PROPERTY, property = "type")
interface WidgetFactory extends Discoverable {

}

Widget createWidget () ;

Then create subtypes of the top-level type corresponding to each alternative, and add their names to META—-INF/
services/WidgetFactory.

2.12. Dropwizard Configuration Reference 57

http://wiki.fasterxml.com/JacksonPolymorphicDeserialization

Dropwizard Documentation, Release 0.8.6

@JsonTypeName ("hammer")

public class HammerFactory implements WidgetFactory {
@JsonProperty
private int weight = 10;

@Override
public Hammer createWidget () {
return new Hammer (weight);

@JsonTypeName ("chisel")

public class ChiselFactory implements WidgetFactory {
@JsonProperty
private float radius = 1;

@Override
public Chisel createWidget () {
return new Chisel (weight) ;

Now you can use WidgetFactory objects in your application’s configuration.

public class MyConfiguration extends Configuration {
@JsonProperty
@NotNull
@vValid
private List<WidgetFactory> widgets;

widgets:
- type: hammer
weight: 20

- type: chisel
radius: 0.4

2.12.1 Servers

server:
type: default
maxThreads: 1024

58

Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

All

Name

Default

Description

type

default

* default
* simple

maxThreads

1024

The maximum number of threads to
use for requests.

minThreads

The minimum number of threads to
use for requests.

maxQueuedRequests

1024

The maximum number of requests
to queue before blocking the accep-
tors.

idleThreadTimeout

1 minute

The amount of time a worker thread
can be idle before being stopped.

nofileSoftLimit

(none)

The number of open file descriptors
before a soft error is issued. Re-
quires Jetty’s 1ibsetuid.so on
java.library.path.

nofileHardLimit

(none)

The number of open file descriptors
before a hard error is issued. Re-
quires Jetty’s 1ibsetuid.so on
java.library.path.

gid

(none)

The group ID to switch to once the
connectors have started. Requires
Jetty’s 1ibsetuid.soon java.
library.path.

uid

(none)

The user ID to switch to once the
connectors have started. Requires
Jetty’s 1ibsetuid.soon java.
library.path.

user

(none)

The username to switch to once the
connectors have started. Requires
Jetty’s 1ibsetuid.soon java.
library.path.

group

(none)

The group to switch to once the
connectors have started. Requires
Jetty’s 1ibsetuid.soon java.
library.path.

umask

(none)

The umask to switch to once the
connectors have started. Requires
Jetty’s 1ibsetuid.soon java.
library.path.

startsAsRoot

(none)

Whether or not the Dropwizard ap-
plication is started as a root user.
Requires Jetty’s libsetuid.so
on java.library.path.

shutdownGracePeriod

30 seconds

The maximum time to wait for
Jetty, and all Managed instances,
to cleanly shutdown before forcibly
terminating them.

allowedMethods

GET, POST, PUT, DELETE, HEAD,
OPTIONS, PATCH

The set of allowed HTTP methods.
Others will be rejected with a 405

Method Not Allowed response.

2rb2:PDropwizard Configuration K

Reference

The URL pattern relative (59
applicationContextPath
from which the JAX-RS resources

will be served.

Dropwizard Documentation, Release 0.8.6

GZip
server:
gzip:
bufferSize: 8KiB
Name De- Description
fault
enabled true If true, all requests with gzip in their Accept-Content-Encoding headers will have
their response entities encoded with gzip.
minimumEnti- 256 All response entities under this size are not compressed.
tySize bytes
bufferSize 8KiB The size of the buffer to use when compressing.
excludedUserA- | [] The set of user agents to exclude from compression.
gents
compressed- (] If specified, the set of mime types to compress.
MimeTypes
Request Log
server:
requestLog:
timeZone: UTC
Name | Default Description
time- UTC The time zone to which request timestamps will be converted.
Zone
appen- | console ap- | The set of AppenderFactory appenders to which requests will be logged. TODO See
ders pender logging/appender refs for more info
Simple

Extends the attributes that are available to all servers

server:
type: s

imple

applicationContextPath: /application
adminContextPath:

connect
type:
port:

or:
http
8080

/admin

60

Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

Name De- Description
fault

connector http HttpConnectorFactory HTTP connector listening on port 8080. The ConnectorFactory
con- connector which will handle both application and admin requests. TODO link to connector
nector | below.

applica- /appli- | The context path of the application servlets, including Jersey.

tionCon- cation

textPath

adminCon- | /admin | The context path of the admin servlets, including metrics and tasks.

textPath

Default

Extends the attributes that are available to all servers

server:
adminMinThreads: 1
adminMaxThreads: 64

adminContextPath: /
applicationContextPath: /
applicationConnectors:

- type: http
port: 8080
- type: https
port: 8443
keyStorePath: example.keystore
keyStorePassword: example
validateCerts: false
adminConnectors:
- type: http
port: 8081
- type: https
port: 8444
keyStorePath: example.keystore
keyStorePassword: example
validateCerts: false
Name Default Description
application- An HTTP connector listen- | A set of connectors which will handle application requests.
Connectors ing on port 8080.
adminConnec- | An HTTP connector listen- | An HTTP connector listening on port 8081. A set of connectors
tors ing on port 8081. which will handle admin requests.
admin- 1 The minimum number of threads to use for admin requests.
MinThreads
adminMax- 64 The maximum number of threads to use for admin requests.
Threads
adminCon- / The context path of the admin servlets, including metrics and
textPath tasks.
application- / The context path of the application servlets, including Jersey.
ContextPath

2.12. Dropwizard Configuration Reference

61

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java

Dropwizard Documentation, Release 0.8.6

2.12.2 Connectors

HTTP

Extending from the default server configuration
server:
applicationConnectors:
- type: http

port: 8080
bindHost: 127.0.0.1 # only bind to loopback
headerCacheSize: 512 bytes
outputBufferSize: 32KiB
maxRequestHeaderSize: 8KiB
maxResponseHeaderSize: 8KiB
inputBufferSize: 8KiB
idleTimeout: 30 seconds
minBufferPoolSize: 64 bytes
bufferPoolIncrement: 1KiB
maxBufferPoolSize: 64KiB
acceptorThreads: 1
selectorThreads: 2
acceptQueueSize: 1024
reuseAddress: true
soLingerTime: 345s
useServerHeader: false
useDateHeader: true
useForwardedHeaders: true

62

Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

Name De- | Description
fault

port | 8080 The TCP/IP port on which to listen for incoming connections.

bind- | (none¢) The hostname to bind to.

Host

head- | 512 | The size of the header field cache.

er- bytes|

Cacher

Size

out- | 32KiBThe size of the buffer into which response content is aggregated before being sent to the client.
put- A larger buffer can improve performance by allowing a content producer to run without blocking,
Buffer- however larger buffers consume more memory and may induce some latency before a client starts

Size processing the content.

maxRe-8KiB| The maximum size of a request header. Larger headers will allow for more and/or larger cookies
quest- plus larger form content encoded in a URL. However, larger headers consume more memory and
Head- can make a server more vulnerable to denial of service attacks.

er-
Size

maxRe-8KiB The maximum size of a response header. Larger headers will allow for more and/or larger cookies
spon- and longer HTTP headers (eg for redirection). However, larger headers will also consume more
se- memory.

Head-
er-
Size

in- 8KiB The size of the per-connection input buffer.
put-
Buffer
Size

idle- | 30 The maximum idle time for a connection, which roughly translates to the
Time-| sec- | java.net.Socket#setSoTimeout(int) call, although with NIO implementations other mechanisms may
out onds| be used to implement the timeout. The max idle time is applied when waiting for a new message to
be received on a connection or when waiting for a new message to be sent on a connection. This
value is interpreted as the maximum time between some progress being made on the connection. So
if a single byte is read or written, then the timeout is reset.

min- | 64 | The minimum size of the buffer pool.
Buffer- bytes

Pool-

Size

buffer; 1KiB| The increment by which the buffer pool should be increased.

Poolln-

cre-

ment

maxBufteiKiB The maximum size of the buffer pool.

Pool-

Size

ac- # The number of worker threads dedicated to accepting connections.
cep- | of

torThre«dBUs/2

se- # The number of worker threads dedicated to sending and receiving data.
lec- | of

torThre4dBUs

ac- (OS | The size of the TCP/IP accept queue for the listening socket.

cep- | de-

tQueue-fault

Size —
refise- %% is enabled on the listening socket. 09
Ad-

dress

soLingefdis- | Enable/disable SO LINGER with the specified linger time.

http://docs.oracle.com/javase/7/docs/api/java/net/Socket.html#setSoTimeout(int)
http://download.eclipse.org/jetty/stable-9/apidocs/org/eclipse/jetty/server/ForwardedRequestCustomizer.html
http://download.eclipse.org/jetty/stable-9/apidocs/org/eclipse/jetty/server/ForwardedRequestCustomizer.html

Dropwizard Documentation, Release 0.8.6

HTTPS

Extends the attributes that are available to the HTTP connector

Extending from the default server configuration
server:
applicationConnectors:
- type: https
port: 8443

keyStorePath: /path/to/file
keyStorePassword: changeit
keyStoreType: JKS
keyStoreProvider:
trustStorePath: /path/to/file
trustStorePassword: changeit
trustStoreType: JKS
trustStoreProvider:
keyManagerPassword: changeit
needClientAuth: false
wantClientAuth:

certAlias: <alias>

crlPath: /path/to/file
enableCRLDP: false
enableOCSP: false
maxCertPathLength: (unlimited)
ocspResponderUrl: (none)
jceProvider: (none)
validateCerts: true
validatePeers: true
supportedProtocols: SSLv3
excludedProtocols: (none)

supportedCipherSuites: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

excludedCipherSuites: (none)
allowRenegotiation: true
endpointIdentificationAlgorithm: (none)

64

Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

Name | De- | Description
fault
key- RE- | The path to the Java key store which contains the host certificate and private key.
StorePath QUIRED
key- RE- | The password used to access the key store.
StorePags-QUIRED
word
key- JKS | The type of key store (usually JKS, PKCS12, JCEKS*‘, Windows—-MY}, or Windows—ROOT).
Store-
Type
key- (nong) The JCE provider to use to access the key store.
Store-
Provider
trust- (nong) The path to the Java key store which contains the CA certificates used to establish trust.
StorePath
trust- (nong) The password used to access the trust store.
StorePags-
word
trust- JKS | The type of trust store (usually JKS, PKCS12, JCEKS, Windows—MY, or Windows—-ROOT).
Store-
Type
trust- (none) The JCE provider to use to access the trust store.
Store-
Provider|
key- (none) The password, if any, for the key manager.
Man-
ager-
Pass-
word
need- (none) Whether or not client authentication is required.
Clien-
tAuth
want- (none) Whether or not client authentication is requested.
Clien-
tAuth
cer- (nong) The alias of the certificate to use.
tAlias
crl- (nong) The path to the file which contains the Certificate Revocation List.
Path
en- false| Whether or not CRL Distribution Points (CRLDP) support is enabled.
able-
CRLDP
en- false| Whether or not On-Line Certificate Status Protocol (OCSP) support is enabled.
ableOCSP
max- (un- | The maximum certification path length.
Cert- lim-
Path- ited)
Length
oc- (none) The location of the OCSP responder.
spRe-
spon-
derUrl
jee- (none) The name of the JCE provider to use for cryptographic support.
Provider|
2v " Dro g\}lv?zar\g ‘t)hﬁ: ioru Il}giitonv ldflet(l?eh Jébe cerfificates betore starting. If enabled, Dropwizard will retuse tg 5
date- start wi %xplre o1 othenwisadnvalid certificates.
Certs
vali- true | Whether or not to validate TLS peer certificates.
date-

https://github.com/iSECPartners/sslyze

Dropwizard Documentation, Release 0.8.6

SPDY

Extends the attributes that are available to the HTTPS connector

For this connector to work with ALPN protocol you need to provide alpn-boot library to JVM’s bootpath. The correct

library version depends on the JVM version. Consult Jetty ALPN guide for the reference.

server:
applicationConnectors:
- type: spdy3

port: 8445

keyStorePath: example.keystore

keyStorePassword: example

validateCerts: false
Name Default | Description
pushStrategy | (none) The push strategy to use for server-initiated SPDY pushes.

2.12.3 Logging

logging:
level: INFO
loggers:
io.dropwizard:
appenders:

- type:

INFO

console

Name Default

Description

level Level. INFO

Logback logging level

loggers (none)

appenders | (none)

one of console, file or syslog

Console

logging:
level: INFO
appenders:

- type: console
threshold: ALL
timeZone: UTC
target: stdout
logFormat: # TODO

66

Chapter 2. User Manual

http://www.eclipse.org/jetty/documentation/current/alpn-chapter.html
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-spdy/src/main/java/io/dropwizard/spdy/PushStrategyFactory.java

Dropwizard Documentation, Release 0.8.6

Name Default Description
type RE- The appender type. Must be console.
QUIRED
thresh- ALL The lowest level of events to print to the console.
old
time- UTC The time zone to which event timestamps will be converted.
Zone
target stdout The name of the standard stream to which events will be written. Can be stdout or
stderr.
logFor- default The Logback pattern with which events will be formatted. See the Logback documenta-
mat tion for details.
File
logging:
level: INFO
appenders:
- type: file

currentLogFilename: /var/log/myapplication.log
threshold: ALL

archive:
archivedLogFilenamePattern: /var/log/myapplication-%d.log
archivedFileCount: 5

timeZone:
logFormat: # TODO

true

UTC

Name De- | Description
fault
type RE- | The appender type. Must be £ile.
QUIRED
current- RE- | The filename where current events are logged.
LogFile- | QUIRED
name
threshold | ALL | The lowest level of events to write to the file.
archive true | Whether or not to archive old events in separate files.
archived- | (none]) Required if archive is true. The filename pattern for archived files. %d is replaced with
LogFile- the date in yyyy-MM-dd form, and the fact that it ends with . gz indicates the file will be
namePat- gzipped as it’s archived. Likewise, filename patterns which end in . zip will be filled as they
tern are archived.
archived- | 5 The number of archived files to keep. Must be between 1 and 50.
File-
Count
time- UTC| The time zone to which event timestamps will be converted.
Zone
logFor- de- | The Logback pattern with which events will be formatted. See the Logback documentation for
mat fault | details.

2.12. Dropwizard Configuration Reference 67

http://logback.qos.ch/manual/layouts.html#conversionWord
http://logback.qos.ch/manual/layouts.html#conversionWord

Dropwizard Documentation, Release 0.8.6

Syslog

logging:
level: INFO
appenders:

- type: syslog
host: localhost
port: 514
facility: localO
threshold: ALL
stackTracePrefix: \t
logFormat: # TODO

Name | De- | Description

fault
host lo- | The hostname of the syslog server.
cal-
host
port 514 | The port on which the syslog server is listening.

localb, local6,or localT.

facility | lo- The syslog facility to use. Can be either auth, authpriv, daemon, cron, ftp, lpr,
cal0 | kern,mail, news, syslog, user, uucp, localO, locall, local2, local3, locald,

thresh- | ALL| The lowest level of events to write to the file.

old

log- de- | The Logback pattern with which events will be formatted. See the Logback documentation for
Format | fault| details.

stack- t The prefix to use when writing stack trace lines (these are sent to the syslog server separately
Tra- from the main message)

cePre-

fix

2.12.4 Metrics

The metrics configuration has two fields; frequency and reporters.

metrics:
frequency: 1 minute
reporters:
- type: <type>

Name Default | Description
frequency | 1 minute | The frequency to report metrics. Overridable per-reporter.
reporters | (none) A list of reporters to report metrics.

All Reporters

The following options are available for all metrics reporters.

metrics:
reporters:
- type: <type>

(continues on next page)

68 Chapter 2. User Manual

http://logback.qos.ch/manual/layouts.html#conversionWord

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

durationUnit: milliseconds
rateUnit: seconds
excludes: (none)

includes: (all)
useRegexFilters: false
frequency: 1 minute

Name Default Description

duratio- millisec- | The unit to report durations as. Overrides per-metric duration units.

nUnit onds

rateUnit seconds The unit to report rates as. Overrides per-metric rate units.

excludes (none) Metrics to exclude from reports, by name. When defined, matching metrics will not be
reported.

includes (all) Metrics to include in reports, by name. When defined, only these metrics will be re-
ported.

useRegex- false Indicates whether the values of the ‘includes’ and ‘excludes’ fields should be treated as

Filters regular expressions or not.

frequency (none) The frequency to report metrics. Overrides the default.

The inclusion and exclusion rules are defined as:
* If includes is empty, then all metrics are included;
« If includes is not empty, only metrics from this list are included;
* If excludes is empty, no metrics are excluded;
* If excludes is not empty, then exclusion rules take precedence over inclusion rules. Thus if a name matches

the exclusion rules it will not be included in reports even if it also matches the inclusion rules.

Formatted Reporters

These options are available only to “formatted” reporters and extend the options available to all reporters

metrics:
reporters:
- type: <type>
locale: <system default>

Name | Default Description
locale | System default | The Locale for formatting numbers, dates and times.

Console Reporter

Reports metrics periodically to the console.

Extends the attributes that are available to formatted reporters

metrics:
reporters:
- type: console

(continues on next page)

2.12. Dropwizard Configuration Reference 69

http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

timeZone: UTC
output: stdout

Name Default | Description
timeZone | UTC The timezone to display dates/times for.
output stdout The stream to write to. One of stdout or stderr.

CSV Reporter

Reports metrics periodically to a CSV file.

Extends the attributes that are available to formatted reporters

metrics:
reporters:
- type: csv
file: /path/to/file

Name | Default Description

file No default | The CSV file to write metrics to.

Ganglia Reporter

Reports metrics periodically to Ganglia.

Extends the attributes that are available to all reporters

Note: You will need to add dropwizard-metrics—-ganglia to your POM.

metrics:
reporters:
- type: ganglia
host: localhost

port: 8649
mode: unicast
ttl: 1

uuid: (none)

spoof: localhost:8649
tmax: 60

dmax: O

70

Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

Name| De- Description
fault
host local- The hostname (or group) of the Ganglia server(s) to report to.
host
port 8649 The port of the Ganglia server(s) to report to.
mode | unicast | The UDP addressing mode to announce the metrics with. One of unicast ormulticast.
ttl 1 The time-to-live of the UDP packets for the announced metrics.
uuid (none) | The UUID to tag announced metrics with.
spoof | (none) | The hostname and port to use instead of this nodes for the announced metrics. In the format
hostname:port.
tmax | 60 The tmax value to annouce metrics with.
dmax | 0 The dmax value to announce metrics with.

Graphite Reporter

Reports metrics periodically to Graphite.

Extends the attributes that are available to all reporters

Note: You will need to add dropwizard-metrics—graphite to your POM.

metrics:
reporters:
- type: graphite
host: localhost
port: 8080
prefix: <prefix>
Name | Default | Description
host localhost | The hostname of the Graphite server to report to.
port 8080 The port of the Graphite server to report to.
prefix | (none) The prefix for Metric key names to report to Graphite.
SLF4J

Reports metrics periodically by logging via SLF4J.

Extends the attributes that are available to all reporters

See BaseReporterFactory and BaseFormattedReporterFactory for more options.

metrics:
reporters:
- type: log

logger: metrics

markerName: <marker name>
Name Default | Description
logger metrics | The name of the logger to write metrics to.
markerName | (none) The name of the marker to mark logged metrics with.

2.12. Dropwizard Configuration Reference

71

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-metrics/src/main/java/io/dropwizard/metrics/BaseReporterFactory.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-metrics/src/main/java/io/dropwizard/metrics/BaseFormattedReporterFactory.java

Dropwizard Documentation, Release 0.8.6

2.12.5 Clients

HttpClient

See HttpClientConfiguration for more options.

httpClient:
timeout: 500ms
connectionTimeout: 500ms
timeToLive: 1h
cookiesEnabled: false
maxConnections: 1024
maxConnectionsPerRoute: 1024
keepAlive: Oms
retries: 0
userAgent: <application name> (<client name>)

Name Default Description
timeout 500 millisec- | The maximum idle time for a connection, once established.
onds

connec- 500 millisec- | The maximum time to wait for a connection to open.

tionTime- | onds

out

connec- 500 millisec- | The maximum time to wait for a connection to be returned from the connection

tionRe- onds pool.

quest-

Timeout

timeTo- 1 hour The maximum time a pooled connection can stay idle (not leased to any thread)

Live before it is shut down.

cook- false Whether or not to enable cookies.

iesEn-

abled

maxCon- | 1024 The maximum number of concurrent open connections.

nections

maxCon- 1024 The maximum number of concurrent open connections per route.

nection-

sPerRoute

keepAlive | O milliseconds | The maximum time a connection will be kept alive before it is reconnected. If set
to 0, connections will be immediately closed after every request/response.

retries 0 The number of times to retry failed requests. Requests are only re-
tried if they throw an exception other than InterruptedIOException,
UnknownHostException, ConnectException, or SSLException.

userAgent | applicationNZhe User-Agent to send with requests.

(clientName

JerseyClient

Extends the attributes that are available to htip clients

See JerseyClientConfiguration and HttpClientConfiguration for more options.

jerseyClient:
minThreads: 1

(continues on next page)

72 Chapter 2. User Manual

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/HttpClientConfiguration.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/JerseyClientConfiguration.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/HttpClientConfiguration.java

Dropwizard Documentation, Release 0.8.6

(continued from previous page)

maxThreads: 128
workQueueSize: 8
gzipEnabled: true

gzipEnabledForRequests:

true

chunkedEncodingEnabled: true

Name De- | Description

fault
minThreads 1 The minimum number of threads in the pool used for asynchronous requests.
maxThreads 128 | The maximum number of threads in the pool used for asynchronous requests.
workQueue- 8 The size of the work queue of the pool used for asynchronous requests. Additional
Size threads will be spawn only if the queue is reached its maximum size.
gzipEnabled true | Adds an Accept-Encoding: gzip header to all requests, and enables automatic gzip de-

coding of responses.

gzipEnabled- true | Adds a Content-Encoding: gzip header to all requests, and enables automatic gzip en-
ForRequests coding of requests.
chunkedEn- true | Enables the use of chunked encoding for requests.
codingEnabled

2.12.6 Database

database:
driverClass org.postgresqgl.Driver
url: 'jdbc:postgresqgl://db.example.com/db-prod'
user: pg-user
password: 1iAMsOOperSecrEET
Name Default Description
driverClass REQUIRED The full name of the JDBC driver class.
url REQUIRED The URL of the server.
user REQUIRED The username used to connect to the server.
password none The password used to connect to the server.
abandonWhenPercentageFull | 0 Connections that have been abandoned (timed out) won’t get closed and rep
alternateUsernamesAllowed | false Set to true if the call getConnection(username,password) is allowed. This is
commitOnReturn false Set to true if you want the connection pool to commit any pending transactic
autoCommitByDefault JDBC driver’s default | The default auto-commit state of the connections.
readOnlyByDefault JDBC driver’s default | The default read-only state of the connections.
properties none Any additional JDBC driver parameters.
defaultCatalog none The default catalog to use for the connections.
defaultTransactionlsolation JDBC driver’s default | The default transaction isolation to use for the connections. Can be one of nc
useFairQueue true If true, calls to getConnection are handled in a FIFO manner.
initialSize 10 The initial size of the connection pool.
minSize 10 The minimum size of the connection pool.
maxSize 100 The maximum size of the connection pool.
initializationQuery none A custom query to be run when a connection is first created.
logAbandonedConnections false If true, logs stack traces of abandoned connections.
logValidationErrors false If true, logs errors when connections fail validation.
maxConnectionAge none If set, connections which have been open for longer than maxConnectionAg;
maxWaitForConnection 30 seconds If a request for a connection is blocked for longer than this period, an except

2.12. Dropwizard Configuration Reference

73

Dropwizard Documentation, Release 0.8.6

Table 1-c
Name Default Description
minldleTime 1 minute The minimum amount of time an connection must sit idle in the pool before
validationQuery SELECT 1 The SQL query that will be used to validate connections from this pool befor
validationQueryTimeout none The timeout before a connection validation queries fail.
checkConnectionWhileldle true Set to true if query validation should take place while the connection is idle.
checkConnectionOnBorrow false Whether or not connections will be validated before being borrowed from th
checkConnectionOnConnect | false Whether or not connections will be validated before being added to the pool.
checkConnectionOnReturn false Whether or not connections will be validated after being returned to the pool
autoCommentsEnabled true Whether or not ORMs should automatically add comments.
evictionInterval 5 seconds The amount of time to sleep between runs of the idle connection validation, :
validationInterval 30 seconds To avoid excess validation, only run validation once every interval.

2.13 Dropwizard Internals

2.13.1 Startup Sequence

1. Application.run(args)

1. new Bootstrap

. bootstrap.addCommand(new ServerCommand)

2
3. bootstrap.addCommand(new CheckCommand)
4

. initialize(bootstrap) (implemented by your Application)

1. bootstrap.addBundle(bundle)

1. bundle.initialize(bootstrap)

2. bootstrap.addCommand(cmd)

1. cmd.initialize()

5. new Cli(bootstrap and other params)

1. for each cmd in bootstrap.getCommands()

1. configure parser w/ cmd

6. cli.run()

1. is help flag on cmdline? if so, print usage

2. parse cmdline args, determine subcommand (rest of these notes are specific to ServerCommand)

3. command.run(bootstrap, namespace) (implementation in ConfiguredCommand)

1. parse configuration

2. setup logging

4. command.run(bootstrap, namespace, cfg) (implementation in EnvironmentCommand)

1. create Environment

2. bootstrap.run(cfg, env)

3. for each Bundle: bundle.run()

4. for each ConfiguredBundle: bundle.run()

74

Chapter 2. User Manual

Dropwizard Documentation, Release 0.8.6

5. application.run(cfg, env) (implemented by your Application)
7. command.run(env, namespace, cfg) (implemented by ServerCommand)

1. starts Jetty

2.13.2 On Bundles

Running bundles happens in FIFO order. (ConfiguredBundles are always run after Bundles)

2.13.3 Jetty Lifecycle

If you have a component of your app that needs to know when Jetty is going to start, you can implement Managed as
described in the dropwizard docs.

If you have a component that needs to be signaled that Jetty has started (this happens after all Managed objects’ start()
methods are called), you can register with the env’s lifecycle like:

env.lifecycle () .addServerLifecyclelListener (new ServerLifecyclelListener () {
@Override
public void serverStarted(Server server) {
/// ... do things here

}
)i

2.13. Dropwizard Internals 75

Dropwizard Documentation, Release 0.8.6

76

Chapter 2. User Manual

CHAPTER 3

About Dropwizard

3.1 Contributors

Dropwizard wouldn’t exist without the hard work contributed by numerous individuals.

Many, many thanks to:

Adam Jordens
Adam Marcus
Alex Ausch

Alex Heneveld
Alice Chen
Anders Hedstrom
Andreas Stiihrk
Andrei Savu
Andrew Clay Shafer
anikiej

Armando Singer
Artem Prigoda
Arun Horne

Athou

Basil James Whitehouse III

Benjamin Bentmann
Bo Gotthardt
Boyd Meier

77

https://github.com/adamjordens
https://github.com/marcua
https://github.com/aausch
https://github.com/ahgittin
https://github.com/chena
https://github.com/andershedstrom
https://github.com/Trundle
https://github.com/andreisavu
https://github.com/littleidea
https://github.com/anikiej
https://github.com/asinger
https://github.com/arteam
https://github.com/arunh
https://github.com/Athou
https://github.com/basil3whitehouse
https://github.com/bentmann
https://github.com/Lugribossk
https://github.com/bwmeier

Dropwizard Documentation, Release 0.8.6

Bradley Schmidt
Brandon Beck
Brett Hoerner
Brian McCallister
Brian O’Neill
Bruce Ritchie
Bgrge Nese
Cagatay Kavukcuoglu
Cameron Fieber
Camille Fournier
Carl Lerche

Carlo Barbara
Cemalettin Koc
Chad Selph
Charlie La Mothe
cheddar

chena

Chris Gray

Chris Micali

Chris Pimlott
Chris Tierney
Christoffer Eide
Christopher Currie
Christopher Elkins
Christopher Gray
Christoph Kutzinski
Coda Hale

Collin VanDyck
Jan Galinski
Collin Van Dyck
Csaba Palfi

Dale Wijnand

Dan Everton
Daniel Temme
David Illsley

David Morgantini

78

Chapter 3. About Dropwizard

https://github.com/ToadJam
https://github.com/bbeck
https://github.com/bretthoerner
https://github.com/brianm
https://github.com/boneill42
https://github.com/Omega1
https://github.com/bnese
https://github.com/tinkerware
https://github.com/cfieber
https://github.com/skamille
https://github.com/carllerche
https://github.com/carlo-rtr
https://github.com/cemo
https://github.com/chadselph
https://github.com/clamothe
https://github.com/cheddar
https://github.com/chena
https://github.com/chrisgray
https://github.com/cmicali
https://github.com/pimlottc
https://github.com/christierney
https://github.com/eiden
https://github.com/christophercurrie
https://github.com/celkins
https://github.com/chrisgray
https://github.com/kutzi
https://github.com/codahale
https://github.com/collinvandyck
https://github.com/jangalinski
https://github.com/collinvandyck
https://github.com/csabapalfi
https://github.com/dwijnand
https://github.com/deverton
https://github.com/dmt
https://github.com/davidillsley
https://github.com/dmorgantini

David Stendardi
Derek Cicerone
Derek Stainer
Devin Breen
Devin Smith

Dheerendra Rathor

Dietrich Featherston

Dimitris Zavaliadis
Dmitry Minkovsky
dom farr

eepstein

eitan101

Emeka Mosanya
Eric Tschetter
florinn

Fredrik Sundberg
Gary Dusbabek
Glenn McAllister
Graham O’Regan
Greg Bowyer
Gunnar Ahlberg
Hal Hildebrand
Hrvoje Slavicek
Hakan Jonson
Ian Eure

Ilias Bartolini
Jacek Jackowiak
James Ward
Jamie Furness
Jan Galinski
Jared Stehler
Jason Clawson
Jason Dunkelberger
Jason Toffaletti
Jerry-Carter

Jilles Oldenbeuving

3.1.

Contributors

Dropwizard Documentation, Release 0.8.6

https://github.com/dstendardi
https://github.com/derekcicerone
https://github.com/dstainer
https://github.com/ometa
https://github.com/devinrsmith
https://github.com/DheerendraRathor
https://github.com/d2fn
https://github.com/dimzava
https://github.com/dminkovsky
https://github.com/dominicfarr
https://github.com/eepstein
https://github.com/eitan101
https://github.com/emeka
https://github.com/metamx
https://github.com/florinn
https://github.com/KingBuzzer
https://github.com/gdusbabek
https://github.com/glennmcallister
https://github.com/grahamoregan
https://github.com/GregBowyer
https://github.com/gunnarahlberg
https://github.com/Hellblazer
https://github.com/slavus
https://github.com/hawkan
https://github.com/ieure
https://github.com/iliasbartolini
https://github.com/airborn
https://github.com/jamesward
https://github.com/reines
https://github.com/jangalinski
https://github.com/jaredstehler-cengage
https://github.com/jclawson
https://github.com/dirkraft
https://github.com/toffaletti
https://github.com/Jerry-Carter
https://github.com/ojilles

Dropwizard Documentation, Release 0.8.6

Jochen Schalanda
Joe Lauer

Johan Wirde (@jwirde)
Jonathan Halterman
Jonathan Ruckwood
Jon Radon

Jordan Zimmerman
Joshua Spiewak
Justin Miller

Justin Plock

Justin Rudd
Kashyap Paidimarri
_ Kilemensi
Kristian Klette
kschjeld

Lucas

Lunfu Zhong
Malte S. Stretz
Marcin Biegan
Marius Volkhart
Mark Reddy

Mark Wolfe
Marten Gustafson
Matt Brown

Matt Carrier

Matt Hurne

Matt Nelson

Matt Thomson
Matt Veitas

Max Wenzin
Michael Chaten
Michael Fairley
Michael Kearns
Michael McCarthy
Mike Miller

Marten Gustafson

80

Chapter 3. About Dropwizard

https://github.com/joschi
https://github.com/jjlauer
https://github.com/wirde
https://github.com/jhalterman
https://github.com/jon-ruckwood
https://github.com/JonMR
https://github.com/Randgalt
https://github.com/jspiewak
https://github.com/justinrmiller
https://github.com/jplock
https://github.com/seagecko
https://github.com/kashyapp
https://github.com/kilemensi
https://github.com/klette
https://github.com/kschjeld
https://github.com/derlucas
https://github.com/zhongl
https://github.com/mss
https://github.com/mabn
https://github.com/MariusVolkhart
https://github.com/markreddy
https://github.com/wolfeidau
https://github.com/chids
https://github.com/mattnworb
https://github.com/mcarrierastonish
https://github.com/mhurne
https://github.com/mattnelson
https://github.com/matt-thomson
https://github.com/mveitas
https://github.com/betrcode
https://github.com/chaten
https://github.com/michaelfairley
https://github.com/LeekAnarchism
https://github.com/mikeycmccarthy
https://github.com/mikemil
https://github.com/chids

Dropwizard Documentation, Release 0.8.6

Nick Babcock
Nick Telford
Oddmar Sandvik
Oliver B. Fischer
Ori Schwartz
Patrick Stegmann
Paul Tomlin

Philip K. Warren
Philip Potter
Punyashloka Biswal
Quoc-Viet Nguyen
Rachel Newstead
rayokota

Rémi Alvergnat
Richard Nystrom
Riidiger zu Dohna
Ryan Berdeen
Ryan Kennedy
Saad Mufti

Sam Perman

Sam Quigley
Scott Askew

Scott Horn

Sean Scanlon
Sebastian Hartte
Simon Collins
smolloy

Stephen Huenneke
Steve Agalloco
Steve Hill

Stevo Slavic¢
Stuart Gunter
Szymon Pacanowski
Tatu Saloranta
Ted Nyman

Tim Bart

3.1.

Contributors

81

https://github.com/nickbabcock
https://github.com/nicktelford
https://github.com/oddmar
https://github.com/obfischer
https://github.com/fleaflicker
https://github.com/wonderb0lt
https://github.com/ptomli
https://github.com/pkwarren
https://github.com/philandstuff
https://github.com/punya
https://github.com/vietnq
https://github.com/rnewstead1
https://github.com/rayokota
https://github.com/Toilal
https://github.com/ricn
https://github.com/t1
https://github.com/also
https://github.com/ryankennedy
https://github.com/saadmufti
https://github.com/samperman
https://github.com/emerose
https://github.com/scottfromsf
https://github.com/sjhorn
https://github.com/sps
https://github.com/shartte
https://github.com/simoncollins
https://github.com/smolloy
https://github.com/skastel
https://github.com/stve
https://github.com/sghill
https://github.com/sslavic
https://github.com/stuartgunter
https://github.com/spacanowski
https://github.com/cowtowncoder
https://github.com/tnm
https://github.com/pims

Dropwizard Documentation, Release 0.8.6

e Tom Akehurst
e Tom Crayford
e Tom Morris

e Tristan Burch
e Vadim Spivak
e Varun Loiwal
* Vidit Drolia

* WilliamHerbert
e Xavier Shay

* Yun Zhi Lin

3.2 Sponsors

Dropwizard is generously supported by some companies with licenses and free accounts for their products.

3.2.1 JetBrains

JetBrains supports our open source project by sponsoring some All Products Packs within their Free Open Source
License program.

3.3 Frequently Asked Questions

What’s a Dropwizard? A character in a K.C. Green web comic.
How is Dropwizard licensed? It’s licensed under the Apache License v2.

How can I commit to Dropwizard? Go to the GitHub project, fork it, and submit a pull request. We prefer small,
single-purpose pull requests over large, multi-purpose ones. We reserve the right to turn down any proposed
changes, but in general we’re delighted when people want to make our projects better!

82 Chapter 3. About Dropwizard

https://github.com/tomakehurst
https://github.com/tcrayford
https://github.com/tommorris
https://github.com/tburch
https://github.com/vadims
https://github.com/varunl
https://github.com/vdrolia
https://github.com/WilliamHerbert
https://github.com/xaviershay
https://github.com/yunspace
https://www.jetbrains.com/
https://www.jetbrains.com/products.html
https://www.jetbrains.com/buy/opensource/
https://www.jetbrains.com/buy/opensource/
http://gunshowcomic.com/316
http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/dropwizard/dropwizard

Dropwizard Documentation, Release 0.8.6

3.4 Release Notes

3.4.1 v0.8.5: Nov 3 2015

e Treat null values in JAX-RS resource method parameters of type Optional<T> as absent value after con-
version #1323

3.4.2 v0.8.4: Aug 26 2015

» Upgrade to Apache HTTP Client 4.5
» Upgrade to Jersey 2.21
* Fixed user-agent shadowing in Jersey HTTP Client (#1198)

3.4.3 v0.8.3: Aug 24 2015

* In some cases an instance of Jersey HTTP client could be abruptly closed during the application lifetime (#1232)

3.4.4 v0.8.2: Jul 6 2015

* Support for request-scoped configuration for Jersey client

* Upgraded to Jersey 2.19

3.4.5 v0.8.1: Apr 7 2015

* Fixed transcation commiting lifecycle for @UnitOfWork (#850, #915)

* Fixed noisy Logback messages on startup (#902)

* Ability to use providers in TestRule, allows testing of auth & views (#513, #922)

* Custom ExceptionMapper not invoked when Hibernate rollback (#949)

* Support for setting a time bound on DBI and Hibernate health checks

* Default configuration for views

* Ensure that JerseyRequest scoped ClientConfig gets propagated to HttpUriRequest

* More example tests

3.4.6 v0.8.0: Mar 5 2015

* Migrated dropwizard-spdy from NPN to ALPN

* Dropped support for deprecated SPDY/2 in dropwizard-spdy
* Upgrade to argparse4j 0.4.4

e Upgrade to commons-lang3 3.3.2

» Upgrade to Guava 18.0

e Upgrade to H2 1.4.185

3.4. Release Notes 83

https://github.com/dropwizard/dropwizard/pull/1323

Dropwizard Documentation, Release 0.8.6

Upgrade to Hibernate 4.3.5.Final
Upgrade to Hibernate Validator 5.1.3.Final
Upgrade to Jackson 2.5.1

Upgrade to JDBI 2.59

Upgrade to Jersey 2.16

Upgrade to Jetty 9.2.9.v20150224
Upgrade to Joda-Time 2.7

Upgrade to Liquibase 3.3.2

Upgrade to Mustache 0.8.16
Upgrade to SLF4J 1.7.10

Upgrade to tomcat-jdbc 8.0.18
Upgrade to JSR305 annotations 3.0.0
Upgrade to Junit 4.12

Upgrade to Assert] 1.7.1

Upgrade to Mockito 1.10.17

Support for range headers

Ability to use Apache client configuration for Jersey client

Warning when maximum pool size and unbounded queues are combined

Fixed connection leak in CloseableLiquibase

Support ScheduledExecutorService with daemon thread

Improved Dropwizard AppRule

Better connection pool metrics

Removed final modifier from Application#run

Fixed gzip encoding to support Jersey 2.x

Configuration to toggle regex [in/ex]clusion for Metrics

Configuration to disable default exception mappers

Configuration support for disabling chunked encoding

Documentation fixes and upgrades

3.4.7 v0.7.1: Jun 18 2014

¢ Added instrumentation to Task, using metrics annotations.

Added ability to blacklist SSL cipher suites.

Added @PATCH annotation for Jersey resource methods to indicate use of the HTTP PATCH method.

Added support for configurble request

JerseyClientBuilder.

retry behavior

for

HttpClientBuilder and

Added facility to get the admin HTTP port in DropwizardAppTestRule.

84

Chapter 3. About Dropwizard

Dropwizard Documentation, Release 0.8.6

Added ScanningHibernateBundle, which scans packages for entities, instead of requiring you to add
them individually.

Added facility to invalidate credentials from the CachingAuthenticator that match a specified
Predicate.

Added a CI build profile for JDK 8 to ensure that Dropwizard builds against the latest version of the JDK.
Added ——catalog and ——schema options to Liquibase.

Added stackTracePrefix configuration option to SyslogAppenderFactory to configure the pattern
prepended to each line in the stack-trace sent to syslog. Defaults to the TAB character, “t”. Note: this is different
from the bang prepended to text logs (such as “console”, and “file”), as syslog has different conventions for
multi-line messages.

Added ability to validate Optional values using validation annotations. Such values require the
@UnwrapValidatedValue annotation, in addition to the validations you wish to use.

Added facility to configure the User—Agent for HttpClient. Configurable via the userAgent configu-
ration option.

Added configurable AllowedMethodsFilter. Configure allowed HTTP methods for both the application
and admin connnectors with allowedMethods.

Added support for specifying a CredentialProvider for HTTP clients.
Fixed silently overriding Servlets or ServletFilters; registering a duplicate will now emit a warning.

Fixed SyslogAppenderFactory failing when the application name contains a PCRE reserved character
(e.g. / or $).

Fixed regression causing JMX reporting of metrics to not be enabled by default.

Fixed transitive dependencies on log4j and extraneous sl4j backends bleeding in to projects. Dropwizard will
now enforce that only Logback and slf4j-logback are used everywhere.

Fixed clients disconnecting before the request has been fully received causing a “500 Internal Server Error”
to be generated for the request log. Such situations will now correctly generate a “400 Bad Request”, as the
request is malformed. Clients will never see these responses, but they matter for logging and metrics that were
previously considering this situation as a server error.

Fixed DiscoverableSubtypeResolver using the system ClassLoader, instead of the local one.
Fixed regression causing Liquibase ——dump to fail to dump the database.

Fixed the CSV metrics reporter failing when the output directory doesn’t exist. It will now attempt to create the
directory on startup.

Fixed global frequency for metrics reporters being permenantly overridden by the default frequency for individ-
ual reporters.

Fixed tests failing on Windows due to platform-specific line separators.

Changed DropwizardAppTestRule so that it no longer requires a configuration path to operate. When no
path is specified, it will now use the applications’ default configuration.

Changed Boot st rap so that getMetricsFactory () may now be overridden to provide a custom instance
to the framework to use.

Upgraded to Guava 17.0 Note: this addresses a bug with BloomFilters that is incompatible with pre-17.0 Bloom-
Filters.

Upgraded to Jackson 2.3.3
Upgraded to Apache HttpClient 4.3.4

3.4.

Release Notes 85

Dropwizard Documentation, Release 0.8.6

Upgraded to Metrics 3.0.2

Upgraded to Logback 1.1.2

Upgraded to h2 1.4.178

Upgraded to jDBI 2.55

Upgraded to Hibernate 4.3.5 Final
Upgraded to Hibernate Validator 5.1.1 Final
Upgraded to Mustache 0.8.15

3.4.8 v0.7.0: Apr 04 2014

Upgraded to Java 7.
Moved to the io.dropwizard group ID and namespace.

Extracted out a number of reusable libraries: dropwizard-configuration, dropwizard-jackson,
dropwizard-jersey, dropwizard-jetty, dropwizard-lifecycle, dropwizard-logging,
dropwizard-servlets,dropwizard-util, dropwizard-validation.

Extracted out various elements of Environment to separate classes: JerseyEnvironment,
LifecycleEnvironment, etc.

Extracted out dropwizard-views-freemarker and dropwizard-views-mustache.
dropwizard-views just provides infrastructure now.

Renamed Service to Application.

Added dropwizard-forms, which provides support for multipart MIME entities.

Added dropwizard-spdy.

Added AppenderFactory, allowing for arbitrary logging appenders for application and request logs.
Added ConnectorFactory, allowing for arbitrary Jetty connectors.

Added ServerFactory, with multi- and single-connector implementations.

Added ReporterFactory, for metrics reporters, with Graphite and Ganglia implementations.

Added ConfigurationSourceProvider to allow loading configuration files from sources other than the
filesystem.

Added setuid support. Configure the user/group to run as and soft/hard open file limits in the ServerFactory.
To bind to privileged ports (e.g. 80), enable startAsRoot and set user and group, then start your applica-
tion as the root user.

Added builders for managed executors.

Added a default check command, which loads and validates the service configuration.
Added support for the Jersey HTTP client to dropwizard-client.

Added Jackson Afterburner support.

Added support for deflate-encoded requests and responses.

Added support for HTTP Sessions. Add the annotated parameter to your resource method: @Session
HttpSession session to have the session context injected.

Added support for a “flash” message to be propagated across requests. Add the annotated parameter to your
resource method: @Session Flash message to have any existing flash message injected.

86

Chapter 3. About Dropwizard

Dropwizard Documentation, Release 0.8.6

Added support for deserializing Java enums with fuzzy matching rules (i.e., whitespace stripping, —/_ equiva-
lence, case insensitivity, etc.).

Added HibernateBundlef#configure (Configuration) for customization of Hibernate configura-
tion.

Added support for Joda Time DateTime arguments and results when using JDBI.

Added configuration option to include Exception stack-traces when logging to syslog. Stack traces are now
excluded by default.

Added the application name and PID (if detectable) to the beginning of syslog messages, as is the convention.
Added -—migrations command-line option to migrate command to supply the migrations file explicitly.
Validation errors are now returned as application/ json responses.

Simplified AsyncRequestLog; now standardized on Jetty 9 NCSA format.

Renamed DatabaseConfiguration to DataSourceFactory, and ConfigurationStrategy to
DatabaseConfiguration.

Changed logging to be asynchronous. Messages are now buffered and batched in-memory before being delivered
to the configured appender(s).

Changed handling of runtime configuration errors. Will no longer display an Exception stack-trace and will
present a more useful description of the problem, including suggestions when appropriate.

Changed error handling to depend more heavily on Jersey exception mapping.
Changed dropwizard-db to use tomcat—jdbc instead of tomcat-dbcp.
Changed default formatting when logging nested Exceptions to display the root-cause first.
Replaced ResourceTest with ResourceTestRule, a JUnit TestRule.
Dropped Scala support.

Dropped ManagedSessionFactory.

Dropped Ob jectMapperFactory; use ObjectMapper instead.

Dropped Validator;use javax.validation.Validator instead.
Fixed a shutdown bug in dropwizard-migrations.

Fixed formatting of “Caused by” lines not being prefixed when logging nested Exceptions.
Fixed not all available Jersey endpoints were being logged at startup.

Upgraded to argparse4j 0.4.3.

Upgraded to Guava 16.0.1.

Upgraded to Hibernate Validator 5.0.2.

Upgraded to Jackson 2.3.1.

Upgraded to JDBI 2.53.

Upgraded to Jetty 9.0.7.

Upgraded to Liquibase 3.1.1.

Upgraded to Logback 1.1.1.

Upgraded to Metrics 3.0.1.

Upgraded to Mustache 0.8.14.

3.4.

Release Notes 87

Dropwizard Documentation, Release 0.8.6

» Upgraded to SLF4J 1.7.6.

» Upgraded to Jersey 1.18.

» Upgraded to Apache HttpClient 4.3.2.
» Upgraded to tomcat-jdbc 7.0.50.

e Upgraded to Hibernate 4.3.1.Final.

3.4.9 v0.6.2: Mar 18 2013

* Added support for non-UTF8 views.

* Fixed an NPE for services in the root package.

* Fixed exception handling in TaskServlet.
» Upgraded to Sif4j 1.7.4.

» Upgraded to Jetty 8.1.10.

» Upgraded to Jersey 1.17.1.

e Upgraded to Jackson 2.1.4.

» Upgraded to Logback 1.0.10.

* Upgraded to Hibernate 4.1.9.

» Upgraded to Hibernate Validator 4.3.1.
e Upgraded to tomcat-dbcp 7.0.37.

» Upgraded to Mustache.java 0.8.10.

e Upgraded to Apache HttpClient 4.2.3.
e Upgraded to Jackson 2.1.3.

» Upgraded to argparse4j 0.4.0.

* Upgraded to Guava 14.0.1.

» Upgraded to Joda Time 2.2.

* Added retriesto HttpClientConfiguration.

* Fixed log formatting for extended stack traces, also now using extended stack traces as the default.

* Upgraded to FEST Assert 2.0M10.

3.4.10 v0.6.1: Nov 28 2012

* Fixed incorrect latencies in request logs on Linux.

* Added ability to register multiple ServerLifecycleListener instances.

88

Chapter 3. About Dropwizard

Dropwizard Documentation, Release 0.8.6

3.4.11 v0.6.0: Nov 26 2012

* Added Hibernate support in dropwizard-hibernate.

¢ Added Liquibase migrations in dropwizard-migrations.

¢ Renamed http.acceptorThreadCount to http.acceptorThreads.

¢ Renamed ss1.keyStorePathto ssl.keyStore.

* Dropped JerseyClient. Use Jersey’s Client class instead.

* Moved JDBI support to dropwizard-jdbi.

* Dropped Database. Use JDBI’s DBT class instead.

* Dropped the Json class. Use ObjectMapperFactory and ObjectMapper instead.
* Decoupled JDBI support from tomcat-dbcp.

* Added group support to Validator.

* Moved CLI support to argparse4j.

* Fixed testing support for Opt ional resource method parameters.

* Fixed Freemarker support to use its internal encoding map.

* Added property support to ResourceTest.

* Fixed JDBI metrics support for raw SQL queries.

* Dropped Hamcrest matchers in favor of FEST assertions in dropwizard-testing.

e Split Environment into Bootstrap and Environment, and broke configuration of each into Service’s
#initialize (Bootstrap) and #run (Configuration, Environment).

* Combined AbstractService and Service.

e Trimmed down ScalaService, so be sure to add ScalaBundle.
* Added support for using JerseyClientFactory without an Environment.
* Dropped Jerkson in favor of Jackson’s Scala module.

* Added Optional support for JDBI.

* Fixed bug in stopping AsyncRequestLog.

e Added UUIDParam.

» Upgraded to Metrics 2.2.0.

» Upgraded to Jetty 8.1.8.

» Upgraded to Mockito 1.9.5.

» Upgraded to tomcat-dbcp 7.0.33.

» Upgraded to Mustache 0.8.8.

» Upgraded to Jersey 1.15.

» Upgraded to Apache HttpClient 4.2.2.

* Upgraded to JDBI 2.41.

* Upgraded to Logback 1.0.7 and SLF4J 1.7.2.

* Upgraded to Guava 13.0.1.

3.4. Release Notes 89

Dropwizard Documentation, Release 0.8.6

» Upgraded to Jackson 2.1.1.
* Added support for Joda Time.

Note: Upgrading to 0.6.0 will require changing your code. First, your Service subclass will need to implement both
#initialize (Bootstrap<T>) and #run (T, Environment). What used to be in initialize should
be moved to run. Second, your representation classes need to be migrated to Jackson 2. For the most part, this
is just changing imports to com. fasterxml. jackson.annotation. %, but there are some subtler changes in
functionality. Finally, references to 0.5.x’s Json, JerseyClient, or JDBI classes should be changed to Jackon’s
ObjectMapper, Jersey’s Client, and JDBI's DBT respectively.

3.4.12 v0.5.1: Aug 06 2012

* Fixed logging of managed objects.

* Fixed default file logging configuration.

e Added FEST-Assert as a dropwizard-testing dependency.

* Added support for Mustache templates (x .mustache) to dropwizard-views.

* Added support for arbitrary view renderers.

¢ Fixed command-line overrides when no configuration file is present.

¢ Added support for arbitrary DnsResolver implementations in HttpClientFactory.
» Upgraded to Guava 13.0 final.

* Fixed task path bugs.

» Upgraded to Metrics 2.1.3.

* Added JerseyClientConfiguration#compressRequestEntity for disabling the compression of
request entities.

* Added Environment#scanPackagesForResourcesAndProviders for automatically detecting Jer-
sey providers and resources.

¢ Added Environment#setSessionHandler.

3.4.13 v0.5.0: Jul 30 2012

» Upgraded to JDBI 2.38.1.
* Upgraded to Jackson 1.9.9.
» Upgraded to Jersey 1.13.
» Upgraded to Guava 13.0-rc2.
» Upgraded to HttpClient 4.2.1.
» Upgraded to tomcat-dbcp 7.0.29.
» Upgraded to Jetty 8.1.5.
* Improved AssetServlet:
— More accurate Last-Modified-At timestamps.

— More general asset specification.

90 Chapter 3. About Dropwizard

http://wiki.fasterxml.com/JacksonUpgradeFrom19To20
http://wiki.fasterxml.com/JacksonUpgradeFrom19To20

Dropwizard Documentation, Release 0.8.6

— Default filename is now configurable.
e Improved JacksonMessageBodyProvider:
— Now based on Jackson’s JAX-RS support.
— Doesn’t read or write types annotated with @ JsonIgnoreType.
¢ Added @MinSize, @MaxSize, and @SizeRange validations.
¢ Added @MinDuration, @MaxDuration, and @Durat ionRange validations.
* Fixed race conditions in Logback initialization routines.
 Fixed TaskServlet problems with custom context paths.

e Added jersey-text-framework—core as an explicit dependency of dropwizard-testing. This
helps out some non-Maven build frameworks with bugs in dependency processing.

* Added addProvider to JerseyClientFactory.

» Fixed NullPointerException problems with anonymous health check classes.
* Added support for serializing/deserializing Byt eBuf fer instances as JSON.

* Added supportedProtocols to SSL configuration, and disabled SSLv2 by default.
¢ Added support for Opt ional<Integer> query parameters and others.

* Removed jersey—-freemarker dependency from dropwizard-views.

* Fixed missing thread contexts in logging statements.

* Made the configuration file argument for the server command optional.

* Added support for disabling log rotation.

* Added support for arbitrary KeyStore types.

¢ Added Log.forThisClass ().

* Made explicit service names optional.

3.4.14 v0.4.4: Jul 24 2012

* Added support for @JsonIgnoreType to JacksonMessageBodyProvider.

3.4.15 v0.4.3: Jun 22 2012

* Re-enable immediate flushing for file and console logging appenders.

3.4.16 v0.4.2: Jun 20 2012

* Fixed JsonProcessingExceptionMapper. Now returns human-readable error messages for malformed
or invalid JSON as a 400 Bad Request. Also handles problems with JSON generation and object mapping
in a developer-friendly way.

3.4. Release Notes 91

Dropwizard Documentation, Release 0.8.6

3.4.17 v0.4.1: Jun 19 2012

* Fixed type parameter resolution in for subclasses of subclasses of ConfiguredCommand.
» Upgraded to Jackson 1.9.7.

» Upgraded to Logback 1.0.6, with asynchronous logging.

» Upgraded to Hibernate Validator 4.3.0.

* Upgraded to JDBI 2.34.

» Upgraded to Jetty 8.1.4.

e Added 1logging.console.format, logging.file.format, and logging.syslog.format pa-
rameters for custom log formats.

» Extended ResourceTest to allow for enabling/disabling specific Jersey features.
e Made Configuration serializable as JSON.

* Stopped lumping command-line options in a group in Command.

* Fixed java.util.logging level changes.

» Upgraded to Apache HttpClient 4.2.

* Improved performance of AssetServlet.

* Added withBundle to ScalaService to enable bundle mix-ins.
» Upgraded to SLF4J 1.6.6.

* Enabled configuration-parameterized Jersey containers.

» Upgraded to Jackson Guava 1.9.1, with support for Optional.

* Fixed error message in AssetBundle.

* Fixed WebApplicationException' 's being thrown by ' JerseyClient.

3.4.18 v0.4.0: May 1 2012

» Switched logging from Log4j to Logback.

Deprecated Log#fatal methods.

Deprecated Log4j usage.

Removed Log4j JSON support.

Switched file logging to a time-based rotation system with optional GZIP and ZIP compression.

Replaced logging.file.filenamePattern with logging.file.currentLogFilename
and logging.file.archivedLogFilenamePattern.

Replaced logging.file.retainedFileCount with logging.file.
archivedFileCount.

Moved request logging to use a Logback-backed, time-based rotation system with optional GZIP and ZIP
compression. http.requestLognow has console, file, and syslog sections.

* Fixed validation errors for logging configuration.
* Added ResourceTest#addProvider (Class<?>).

* Added ETag and Last-Modified support to AssetServlet.

92 Chapter 3. About Dropwizard

http://logging.apache.org/log4j/1.2/
http://logback.qos.ch/

Dropwizard Documentation, Release 0.8.6

* Fixed of f logging levels conflicting with YAML'’s helpfulness.

e Improved Optional support for some JDBC drivers.

¢ Added ResourceTest#getJson ().

» Upgraded to Jackson 1.9.6.

* Improved syslog logging.

* Fixed template paths for views.

» Upgraded to Guava 12.0.

* Added support for deserializing CacheBuilderSpec instances from JSON/YAML.
» Switched AssetsBundle and servlet to using cache builder specs.

» Switched CachingAuthenticator to using cache builder specs.

¢ Malformed JSON request entities now produce a 400 Bad Request instead of a 500 Server Error
response.

e Added connectionTimeout, maxConnectionsPerRoute, and keepAlive to
HttpClientConfiguration.

* Added support for using Guava’s Host AndPort in configuration properties.
» Upgraded to tomcat-dbcp 7.0.27.

e Upgraded to JDBI 2.33.2.

* Upgraded to HttpClient 4.1.3.

» Upgraded to Metrics 2.1.2.

e Upgraded to Jetty 8.1.3.

* Added SSL support.

3.4.19 v0.3.1: Mar 15 2012

* Fixed debug logging levels for Log.

3.4.20 v0.3.0: Mar 13 2012

e Upgraded to JDBI 2.31.3.

» Upgraded to Jackson 1.9.5.

» Upgraded to Jetty 8.1.2. (Jetty 9 is now the experimental branch. Jetty 8 is just Jetty 7 with Servlet 3.0 support.)
* Dropped dropwizard-templates and added dropwizard-views instead.

¢ Added AbstractParamfgetMediaType ().

* Fixed potential encoding bug in parsing YAML files.

* Fixed aNullPointerException when getting logging levels via IMX.

* Dropped support for @BearerToken and added dropwizard-auth instead.

Added @CacheControl for resource methods.

¢ Added AbstractService#getJdson () for full Jackson customization.

3.4. Release Notes 93

Dropwizard Documentation, Release 0.8.6

Fixed formatting of configuration file parsing errors.

ThreadNameFilter is now added by default. The thread names Jetty worker threads are set to the method
and URI of the HTTP request they are currently processing.

Added command-line overriding of configuration parameters via system properties. For example, —Ddw.
http.port=8090 will override the configuration file to set http.port to 8090.

Removed ManagedCommand. It was rarely used and confusing.

If http.adminPort is the same as http.port, the admin servlet will be hosted under /admin. This
allows Dropwizard applications to be deployed to environments like Heroku, which require applications to open
a single port.

Added http.adminUsername and http.adminPassword to allow for Basic HTTP Authentication for
the admin servlet.

Upgraded to Metrics 2.1.1.

3.4.21 v0.2.1: Feb 24 2012

Added 1ogging.console.timeZone and logging.file.timeZone to control the time zone of the
timestamps in the logs. Defaults to UTC.

Upgraded to Jetty 7.6.1.
Upgraded to Jersey 1.12.
Upgraded to Guava 11.0.2.
Upgraded to SnakeYAML 1.10.
Upgraded to tomcat-dbcp 7.0.26.
Upgraded to Metrics 2.0.3.

3.4.22 v0.2.0: Feb 15 2012

Switched to using jackson-datatype—guava for JSON serialization/deserialization of Guava types.
Use InstrumentedQueuedThreadPool frommetrics—-Jjetty.

Upgraded to Jackson 1.9.4.

Upgraded to Jetty 7.6.0 final.

Upgraded to tomcat-dbcp 7.0.25.

Improved fool-proofing for Service vs. ScalaService.

Switched to using Jackson for configuration file parsing. SnakeYAML is used to parse YAML configuration
files to a JSON intermediary form, then Jackson is used to map that to your Configuration subclass and its
fields. Configuration files which don’t end in . yaml or . yml are treated as JSON.

Rewrote Json to no longer be a singleton.

Converted JsonHelpers in dropwizard-testing to use normalized JSON strings to compare JSON.
Collapsed DatabaseConfiguration. It’s no longer a map of connection names to configuration objects.
Changed Database to use the validation query in DatabaseConfiguration forits #ping () method.

Changed many HttpConfiguration defaults to match Jetty’s defaults.

94

Chapter 3. About Dropwizard

http://metrics.codahale.com/about/release-notes/#v2-1-1-mar-13-2012

Dropwizard Documentation, Release 0.8.6

» Upgraded to JDBI 2.31.2.

* Fixed JAR locations in the CLI usage screens.
» Upgraded to Metrics 2.0.2.

* Added support for all servlet listener types.

* Added Log#setLevel (Level).

* Added Service#getJerseyContainer, which allows services to fully customize the Jersey container
instance.

e Added the http.contextParameters configuration parameter.

3.4.23 v0.1.3: Jan 19 2012

» Upgraded to Guava 11.0.1.
* Fixed logging in ServerCommand. For the last time.

» Switched to using the instrumented connectors from metrics—jetty. This allows for much lower-level
metrics about your service, including whether or not your thread pools are overloaded.

* Added FindBugs to the build process.

* Added ResourceTest to dropwizard-testing, which uses the Jersey Test Framework to provide full
testing of resources.

» Upgraded to Jetty 7.6.0.RC4.
* Decoupled URIs and resource paths in AssetServlet and AssetsBundle.

* Added rootPath to Configuration. It allows you to serve Jersey assets off a specific path (e.g., /
resources/* vs /).

e AssetServlet now looks for index.htm when handling requests for the root URL.

» Upgraded to Metrics 2.0.0-RCO.

3.4.24 v0.1.2: Jan 07 2012

¢ All Jersey resource methods annotated with @Timed, @Metered, or @Except ionMetered are now instru-
mented viametrics—jersey.

* Now licensed under Apache License 2.0.
» Upgraded to Jetty 7.6.0.RC3.

» Upgraded to Metrics 2.0.0-BETA19.

* Fixed logging in ServerCommand.

e Made ServerCommand#run () non-final.

3.4.25 v0.1.1: Dec 28 2011

* Fixed ManagedCommand to provide access to the Environment, among other things.
* Made JerseyClient’s thread pool managed.

* Improved ease of use for Duration and Size configuration parameters.

3.4. Release Notes 95

Dropwizard Documentation, Release 0.8.6

» Upgraded to Mockito 1.9.0.
e Upgraded to Jetty 7.6.0.RC2.

* Removed single-arg constructors for ConfiguredCommand.

Added Log, a simple front-end for logging.

3.4.26 v0.1.0: Dec 21 2011

¢ Initial release

3.5 Security

During the development of 0.8.x a security vulnerability was identified. The details of the issue are outlined here:

Given that the issue existed prior to the release, and the solution to fix has not been identified, it was determined that

this should not block the release of version 0.8.x.

The goal is to fix this in a subsequent release

3.6 Documentation TODOs

96

Chapter 3. About Dropwizard

https://github.com/dropwizard/dropwizard/issues/768

CHAPTER 4

Doc Versions

1.3.x
1.2.x
1.1.x
1.0.x
0.9.x
0.8.x
0.7.x
0.6.2

97

https://www.dropwizard.io/en/release-1.3.x/
https://www.dropwizard.io/en/release-1.2.x/
https://www.dropwizard.io/en/release-1.1.x/
https://www.dropwizard.io/en/release-1.0.x/
https://www.dropwizard.io/en/release-0.9.x/
https://www.dropwizard.io/en/release-0.8.x/
https://www.dropwizard.io/en/release-0.7.x/
http://dropwizard.github.io/dropwizard/0.6.2

	Getting Started
	User Manual
	About Dropwizard
	Doc Versions

