
Dropwizard Documentation
Release 0.7.0

Coda Hale

June 09, 2016

Contents

1 Getting Started 3

2 User Manual 15

3 About Dropwizard 67

i

ii

Dropwizard Documentation, Release 0.7.0

Dropwizard pulls together stable, mature libraries from the Java ecosystem into a simple, light-weight package that
lets you focus on getting things done.

Dropwizard has out-of-the-box support for sophisticated configuration, application metrics, logging, operational
tools, and much more, allowing you and your team to ship a production-quality web service in the shortest time
possible.

Contents 1

Dropwizard Documentation, Release 0.7.0

2 Contents

CHAPTER 1

Getting Started

Getting Started will guide you through the process of creating a simple Dropwizard project: Hello World. Along
the way, we’ll explain the various underlying libraries and their roles, important concepts in Dropwizard, and
suggest some organizational techniques to help you as your project grows. (Or you can just skip to the fun
part.)

1.1 Overview

Dropwizard straddles the line between being a library and a framework. Its goal is to provide performant, reliable
implementations of everything a production-ready web application needs. Because this functionality is extracted into
a reusable library, your application remains lean and focused, reducing both time-to-market and maintenance burdens.

1.1.1 Jetty for HTTP

Because you can’t be a web application without HTTP, Dropwizard uses the Jetty HTTP library to embed an incredibly
tuned HTTP server directly into your project. Instead of handing your application off to a complicated application
server, Dropwizard projects have a main method which spins up an HTTP server. Running your application as a
simple process eliminates a number of unsavory aspects of Java in production (no PermGen issues, no application
server configuration and maintenance, no arcane deployment tools, no class loader troubles, no hidden application
logs, no trying to tune a single garbage collector to work with multiple application workloads) and allows you to use
all of the existing Unix process management tools instead.

1.1.2 Jersey for REST

For building RESTful web applications, we’ve found nothing beats Jersey (the JAX-RS reference implementation) in
terms of features or performance. It allows you to write clean, testable classes which gracefully map HTTP requests to
simple Java objects. It supports streaming output, matrix URI parameters, conditional GET requests, and much, much
more.

1.1.3 Jackson for JSON

In terms of data formats, JSON has become the web’s lingua franca, and Jackson is the king of JSON on the JVM.
In addition to being lightning fast, it has a sophisticated object mapper, allowing you to export your domain models
directly.

3

http://www.eclipse.org/jetty/
http://jersey.java.net
http://jcp.org/en/jsr/detail?id=311
http://wiki.fasterxml.com/JacksonHome

Dropwizard Documentation, Release 0.7.0

1.1.4 Metrics for metrics

The Metrics library rounds things out, providing you with unparalleled insight into your code’s behavior in your
production environment.

1.1.5 And Friends

In addition to Jetty, Jersey, and Jackson, Dropwizard also includes a number of libraries to help you ship more quickly
and with less regrets.

• Guava, which, in addition to highly optimized immutable data structures, provides a growing number of classes
to speed up development in Java.

• Logback and slf4j for performant and flexible logging.

• Hibernate Validator, the JSR-303 reference implementation, provides an easy, declarative framework for vali-
dating user input and generating helpful, i18n-friendly error messages.

• The Apache HttpClient and Jersey client libraries allow for both low- and high-level interaction with other web
services.

• JDBI is the most straight-forward way to use a relational database with Java.

• Liquibase is a great way to keep your database schema in check throughout your development and release cycles,
applying high-level database refactorings instead of one-off DDL scripts.

• Freemarker and Mustache are simple templating systems for more user-facing applications.

• Joda Time is a very complete, sane library for handling dates and times.

Now that you’ve gotten the lay of the land, let’s dig in!

1.2 Setting Up Maven

We recommend you use Maven for new Dropwizard applications. If you’re a big Ant / Ivy, Buildr, Gradle, SBT,
Leiningen, or Gant fan, that’s cool, but we use Maven and we’ll be using Maven as we go through this example
application. If you have any questions about how Maven works, Maven: The Complete Reference should have what
you’re looking for. (We’re assuming you know how to create a new Maven project. If not, you can use this to get
started.)

First, add a dropwizard.version property to your POM with the current version of Dropwizard (which is 0.7.0):

<properties>
<dropwizard.version>INSERT VERSION HERE</dropwizard.version>

</properties>

Add the dropwizard-core library as a dependency:

<dependencies>
<dependency>

<groupId>io.dropwizard</groupId>
<artifactId>dropwizard-core</artifactId>
<version>${dropwizard.version}</version>

</dependency>
</dependencies>

Alright, that’s enough XML. We’ve got a Maven project set up now, and it’s time to start writing real code.

4 Chapter 1. Getting Started

http://metrics.codahale.com
http://www.eclipse.org/jetty/
http://jersey.java.net
http://wiki.fasterxml.com/JacksonHome
http://code.google.com/p/guava-libraries/
http://logback.qos.ch/
http://www.slf4j.org/
http://www.hibernate.org/subprojects/validator.html
http://jcp.org/en/jsr/detail?id=303
http://hc.apache.org/httpcomponents-client-ga/index.html
http://jersey.java.net
http://www.jdbi.org
http://www.liquibase.org
http://freemarker.sourceforge.net/
http://mustache.github.io/
http://joda-time.sourceforge.net/
http://maven.apache.org
http://ant.apache.org/
http://ant.apache.org/ivy/
http://buildr.apache.org/
http://www.gradle.org/
https://github.com/harrah/xsbt/wiki
https://github.com/technomancy/leiningen
http://gant.codehaus.org/
http://www.sonatype.com/books/mvnref-book/reference/
https://gist.github.com/2019732

Dropwizard Documentation, Release 0.7.0

1.3 Creating A Configuration Class

Each Dropwizard application has its own subclass of the Configuration class which specifies environment-
specific parameters. These parameters are specified in a YAML configuration file which is deserialized to an instance
of your application’s configuration class and validated.

The application we’ll be building is a high-performance Hello World service, and one of our requirements is that we
need to be able to vary how it says hello from environment to environment. We’ll need to specify at least two things
to begin with: a template for saying hello and a default name to use in case the user doesn’t specify their name.

Here’s what our configuration class will looks like, full example conf here :

package com.example.helloworld;

import io.dropwizard.Configuration;
import com.fasterxml.jackson.annotation.JsonProperty;
import org.hibernate.validator.constraints.NotEmpty;

public class HelloWorldConfiguration extends Configuration {
@NotEmpty
private String template;

@NotEmpty
private String defaultName = "Stranger";

@JsonProperty
public String getTemplate() {

return template;
}

@JsonProperty
public void setTemplate(String template) {

this.template = template;
}

@JsonProperty
public String getDefaultName() {

return defaultName;
}

@JsonProperty
public void setDefaultName(String name) {

this.defaultName = name;
}

}

There’s a lot going on here, so let’s unpack a bit of it.

When this class is deserialized from the YAML file, it will pull two root-level fields from the YAML object:
template, the template for our Hello World saying, and defaultName, the default name to use. Both template
and defaultName are annotated with @NotEmpty, so if the YAML configuration file has blank values for either
or is missing template entirely an informative exception will be thrown and your application won’t start.

Both the getters and setters for template and defaultName are annotated with @JsonProperty, which allows
Jackson to both deserialize the properties from a YAML file but also to serialize it.

Note: The mapping from YAML to your application’s Configuration instance is done by Jackson. This means
your Configuration class can use all of Jackson’s object-mapping annotations. The validation of @NotEmpty is

1.3. Creating A Configuration Class 5

http://www.yaml.org/
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/src/main/java/com/example/helloworld/HelloWorldConfiguration.java
http://wiki.fasterxml.com/JacksonHome
http://wiki.fasterxml.com/JacksonAnnotations

Dropwizard Documentation, Release 0.7.0

handled by Hibernate Validator, which has a wide range of built-in constraints for you to use.

Our YAML file, will then look like the below, full example yml here :

template: Hello, %s!
defaultName: Stranger

Dropwizard has many more configuration parameters than that, but they all have sane defaults so you can keep your
configuration files small and focused.

So save that YAML file as hello-world.yml, because we’ll be getting up and running pretty soon and we’ll need
it. Next up, we’re creating our application class!

1.4 Creating An Application Class

Combined with your project’s Configuration subclass, its Application subclass forms the core of your Drop-
wizard application. The Application class pulls together the various bundles and commands which provide basic
functionality. (More on that later.) For now, though, our HelloWorldApplication looks like this:

package com.example.helloworld;

import io.dropwizard.Application;
import io.dropwizard.setup.Bootstrap;
import io.dropwizard.setup.Environment;
import com.example.helloworld.resources.HelloWorldResource;
import com.example.helloworld.health.TemplateHealthCheck;

public class HelloWorldApplication extends Application<HelloWorldConfiguration> {
public static void main(String[] args) throws Exception {

new HelloWorldApplication().run(args);
}

@Override
public String getName() {

return "hello-world";
}

@Override
public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {

// nothing to do yet
}

@Override
public void run(HelloWorldConfiguration configuration,

Environment environment) {
// nothing to do yet

}

}

As you can see, HelloWorldApplication is parameterized with the application’s configuration type,
HelloWorldConfiguration. An initialize method is used to configure aspects of the application required
before the application is run, like bundles, configuration source providers, etc. Also, we’ve added a static main
method, which will be our application’s entry point. Right now, we don’t have any functionality implemented, so our
run method is a little boring. Let’s fix that!

6 Chapter 1. Getting Started

http://docs.jboss.org/hibernate/validator/4.2/reference/en-US/html_single/#validator-defineconstraints-builtin
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml

Dropwizard Documentation, Release 0.7.0

1.5 Creating A Representation Class

Before we can get into the nuts-and-bolts of our Hello World application, we need to stop and think about our API.
Luckily, our application needs to conform to an industry standard, RFC 1149, which specifies the following JSON
representation of a Hello World saying:

{
"id": 1,
"content": "Hi!"

}

The id field is a unique identifier for the saying, and content is the textual representation of the saying. (Thankfully,
this is a fairly straight-forward industry standard.)

To model this representation, we’ll create a representation class:

package com.example.helloworld.core;

import com.fasterxml.jackson.annotation.JsonProperty;
import org.hibernate.validator.constraints.Length;

public class Saying {
private long id;

@Length(max = 3)
private String content;

public Saying() {
// Jackson deserialization

}

public Saying(long id, String content) {
this.id = id;
this.content = content;

}

@JsonProperty
public long getId() {

return id;
}

@JsonProperty
public String getContent() {

return content;
}

}

This is a pretty simple POJO, but there are a few things worth noting here.

First, it’s immutable. This makes Saying instances very easy to reason about in multi-threaded environments as well
as single-threaded environments. Second, it uses the Java Bean standard for the id and content properties. This
allows Jackson to serialize it to the JSON we need. The Jackson object mapping code will populate the id field of the
JSON object with the return value of #getId(), likewise with content and #getContent(). Lastly, the bean
leverages validation to ensure the content size is no greater than 3.

Note: The JSON serialization here is done by Jackson, which supports far more than simple JavaBean objects like
this one. In addition to the sophisticated set of annotations, you can even write your own custom serializers and

1.5. Creating A Representation Class 7

http://www.ietf.org/rfc/rfc1149.txt
http://wiki.fasterxml.com/JacksonHome
http://wiki.fasterxml.com/JacksonAnnotations

Dropwizard Documentation, Release 0.7.0

deserializers.

Now that we’ve got our representation class, it makes sense to start in on the resource it represents.

1.6 Creating A Resource Class

Jersey resources are the meat-and-potatoes of a Dropwizard application. Each resource class is associated with
a URI template. For our application, we need a resource which returns new Saying instances from the URI
/hello-world, so our resource class will look like this:

package com.example.helloworld.resources;

import com.example.helloworld.core.Saying;
import com.google.common.base.Optional;
import com.codahale.metrics.annotation.Timed;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.MediaType;
import java.util.concurrent.atomic.AtomicLong;

@Path("/hello-world")
@Produces(MediaType.APPLICATION_JSON)
public class HelloWorldResource {

private final String template;
private final String defaultName;
private final AtomicLong counter;

public HelloWorldResource(String template, String defaultName) {
this.template = template;
this.defaultName = defaultName;
this.counter = new AtomicLong();

}

@GET
@Timed
public Saying sayHello(@QueryParam("name") Optional<String> name) {

final String value = String.format(template, name.or(defaultName));
return new Saying(counter.incrementAndGet(), value);

}
}

Finally, we’re in the thick of it! Let’s start from the top and work our way down.

HelloWorldResource has two annotations: @Path and @Produces. @Path("/hello-world")
tells Jersey that this resource is accessible at the URI /hello-world, and
@Produces(MediaType.APPLICATION_JSON) lets Jersey’s content negotiation code know that this
resource produces representations which are application/json.

HelloWorldResource takes two parameters for construction: the template it uses to produce the saying and
the defaultName used when the user declines to tell us their name. An AtomicLong provides us with a cheap,
thread-safe way of generating unique(ish) IDs.

8 Chapter 1. Getting Started

Dropwizard Documentation, Release 0.7.0

Warning: Resource classes are used by multiple threads concurrently. In general, we recommend that resources
be stateless/immutable, but it’s important to keep the context in mind.

#sayHello(Optional<String>) is the meat of this class, and it’s a fairly simple method. The
@QueryParam("name") annotation tells Jersey to map the name parameter from the query string to the name
parameter in the method. If the client sends a request to /hello-world?name=Dougie, sayHello will be
called with Optional.of("Dougie"); if there is no name parameter in the query string, sayHello will be
called with Optional.absent(). (Support for Guava’s Optional is a little extra sauce that Dropwizard adds to
Jersey’s existing functionality.)

Inside the sayHello method, we increment the counter, format the template using String.format(String,
Object...), and return a new Saying instance.

Because sayHello is annotated with @Timed, Dropwizard automatically records the duration and rate of its invo-
cations as a Metrics Timer.

Once sayHello has returned, Jersey takes the Saying instance and looks for a provider class which can write
Saying instances as application/json. Dropwizard has one such provider built in which allows for producing
and consuming Java objects as JSON objects. The provider writes out the JSON and the client receives a 200 OK
response with a content type of application/json.

1.6.1 Registering A Resource

Before that will actually work, though, we need to go back to HelloWorldApplication and add this new re-
source class. In its runmethod we can read the template and default name from the HelloWorldConfiguration
instance, create a new HelloWorldResource instance, and then add it to the application’s Jersey environment:

@Override
public void run(HelloWorldConfiguration configuration,

Environment environment) {
final HelloWorldResource resource = new HelloWorldResource(

configuration.getTemplate(),
configuration.getDefaultName()

);
environment.jersey().register(resource);

}

When our application starts, we create a new instance of our resource class with the parameters from the configuration
file and hand it off to the Environment, which acts like a registry of all the things your application can do.

Note: A Dropwizard application can contain many resource classes, each corresponding to its own URI pattern. Just
add another @Path-annotated resource class and call register with an instance of the new class.

Before we go too far, we should add a health check for our application.

1.7 Creating A Health Check

Health checks give you a way of adding small tests to your application to allow you to verify that your application is
functioning correctly in production. We strongly recommend that all of your applications have at least a minimal set
of health checks.

1.7. Creating A Health Check 9

Dropwizard Documentation, Release 0.7.0

Note: We recommend this so strongly, in fact, that Dropwizard will nag you should you neglect to add a health check
to your project.

Since formatting strings is not likely to fail while an application is running (unlike, say, a database connection pool),
we’ll have to get a little creative here. We’ll add a health check to make sure we can actually format the provided
template:

package com.example.helloworld.health;

import com.codahale.metrics.health.HealthCheck;

public class TemplateHealthCheck extends HealthCheck {
private final String template;

public TemplateHealthCheck(String template) {
this.template = template;

}

@Override
protected Result check() throws Exception {

final String saying = String.format(template, "TEST");
if (!saying.contains("TEST")) {

return Result.unhealthy("template doesn't include a name");
}
return Result.healthy();

}
}

TemplateHealthCheck checks for two things: that the provided template is actually a well-formed format string,
and that the template actually produces output with the given name.

If the string is not a well-formed format string (for example, someone accidentally put Hello, %s% in the con-
figuration file), then String.format(String, Object...) will throw an IllegalFormatException
and the health check will implicitly fail. If the rendered saying doesn’t include the test string, the health check will
explicitly fail by returning an unhealthy Result.

1.7.1 Adding A Health Check

As with most things in Dropwizard, we create a new instance with the appropriate parameters and add it to the
Environment:

@Override
public void run(HelloWorldConfiguration configuration,

Environment environment) {
final HelloWorldResource resource = new HelloWorldResource(

configuration.getTemplate(),
configuration.getDefaultName()

);
final TemplateHealthCheck healthCheck =

new TemplateHealthCheck(configuration.getTemplate());
environment.healthChecks().register("template", healthCheck);
environment.jersey().register(resource);

}

Now we’re almost ready to go!

10 Chapter 1. Getting Started

Dropwizard Documentation, Release 0.7.0

1.8 Building Fat JARs

We recommend that you build your Dropwizard applications as “fat” JAR files — single .jar files which contain
all of the .class files required to run your application. This allows you to build a single deployable artifact which
you can promote from your staging environment to your QA environment to your production environment without
worrying about differences in installed libraries. To start building our Hello World application as a fat JAR, we need
to configure a Maven plugin called maven-shade. In the <build><plugins> section of your pom.xml file,
add this:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>1.6</version>
<configuration>

<createDependencyReducedPom>true</createDependencyReducedPom>
<filters>

<filter>
<artifact>*:*</artifact>
<excludes>

<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>

</excludes>
</filter>

</filters>
</configuration>
<executions>

<execution>
<phase>package</phase>
<goals>

<goal>shade</goal>
</goals>
<configuration>

<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">

<mainClass>com.example.helloworld.HelloWorldApplication</mainClass>
</transformer>

</transformers>
</configuration>

</execution>
</executions>

</plugin>

This configures Maven to do a couple of things during its package phase:

• Produce a pom.xml file which doesn’t include dependencies for the libraries whose contents are included in
the fat JAR.

• Exclude all digital signatures from signed JARs. If you don’t, then Java considers the signature invalid and
won’t load or run your JAR file.

• Collate the various META-INF/services entries in the JARs instead of overwriting them. (Neither Drop-
wizard nor Jersey works without those.)

• Set com.example.helloworld.HelloWorldApplication as the JAR’s MainClass. This will al-
low you to run the JAR using java -jar.

1.8. Building Fat JARs 11

Dropwizard Documentation, Release 0.7.0

Warning: If your application has a dependency which must be signed (e.g., a JCA/JCE provider or other trusted
library), you have to add an exclusion to the maven-shade-plugin configuration for that library and include
that JAR in the classpath.

1.8.1 Versioning Your JARs

Dropwizard can also use the project version if it’s embedded in the JAR’s manifest as the
Implementation-Version. To embed this information using Maven, add the following to the
<build><plugins> section of your pom.xml file:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<version>2.4</version>
<configuration>

<archive>
<manifest>

<addDefaultImplementationEntries>true</addDefaultImplementationEntries>
</manifest>

</archive>
</configuration>

</plugin>

This can be handy when trying to figure out what version of your application you have deployed on a machine.

Once you’ve got that configured, go into your project directory and run mvn package (or run the package goal
from your IDE). You should see something like this:

[INFO] Including org.eclipse.jetty:jetty-util:jar:7.6.0.RC0 in the shaded jar.
[INFO] Including com.google.guava:guava:jar:10.0.1 in the shaded jar.
[INFO] Including com.google.code.findbugs:jsr305:jar:1.3.9 in the shaded jar.
[INFO] Including org.hibernate:hibernate-validator:jar:4.2.0.Final in the shaded jar.
[INFO] Including javax.validation:validation-api:jar:1.0.0.GA in the shaded jar.
[INFO] Including org.yaml:snakeyaml:jar:1.9 in the shaded jar.
[INFO] Replacing original artifact with shaded artifact.
[INFO] Replacing /Users/yourname/Projects/hello-world/target/hello-world-0.0.1-SNAPSHOT.jar with /Users/yourname/Projects/hello-world/target/hello-world-0.0.1-SNAPSHOT-shaded.jar
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 8.415s
[INFO] Finished at: Fri Dec 02 16:26:42 PST 2011
[INFO] Final Memory: 11M/81M
[INFO] --

Congratulations! You’ve built your first Dropwizard project! Now it’s time to run it!

1.9 Running Your Application

Now that you’ve built a JAR file, it’s time to run it.

In your project directory, run this:

java -jar target/hello-world-0.0.1-SNAPSHOT.jar

You should see something like the following:

12 Chapter 1. Getting Started

http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html
http://maven.apache.org/plugins/maven-shade-plugin/examples/includes-excludes.html

Dropwizard Documentation, Release 0.7.0

usage: java -jar hello-world-0.0.1-SNAPSHOT.jar
[-h] [-v] {server} ...

positional arguments:
{server} available commands

optional arguments:
-h, --help show this help message and exit
-v, --version show the service version and exit

Dropwizard takes the first command line argument and dispatches it to a matching command. In this case, the only
command available is server, which runs your application as an HTTP server. The server command requires a
configuration file, so let’s go ahead and give it the YAML file we previously saved:

java -jar target/hello-world-0.0.1-SNAPSHOT.jar server hello-world.yml

You should see something like the following:

INFO [2011-12-03 00:38:32,927] io.dropwizard.cli.ServerCommand: Starting hello-world
INFO [2011-12-03 00:38:32,931] org.eclipse.jetty.server.Server: jetty-7.x.y-SNAPSHOT
INFO [2011-12-03 00:38:32,936] org.eclipse.jetty.server.handler.ContextHandler: started o.e.j.s.ServletContextHandler{/,null}
INFO [2011-12-03 00:38:32,999] com.sun.jersey.server.impl.application.WebApplicationImpl: Initiating Jersey application, version 'Jersey: 1.10 11/02/2011 03:53 PM'
INFO [2011-12-03 00:38:33,041] io.dropwizard.setup.Environment:

GET /hello-world (com.example.helloworld.resources.HelloWorldResource)

INFO [2011-12-03 00:38:33,215] org.eclipse.jetty.server.handler.ContextHandler: started o.e.j.s.ServletContextHandler{/,null}
INFO [2011-12-03 00:38:33,235] org.eclipse.jetty.server.AbstractConnector: Started BlockingChannelConnector@0.0.0.0:8080 STARTING
INFO [2011-12-03 00:38:33,238] org.eclipse.jetty.server.AbstractConnector: Started SocketConnector@0.0.0.0:8081 STARTING

Your Dropwizard application is now listening on ports 8080 for application requests and 8081 for administration
requests. If you press ^C, the application will shut down gracefully, first closing the server socket, then waiting for
in-flight requests to be processed, then shutting down the process itself.

But while it’s up, let’s give it a whirl! Click here to say hello! Click here to get even friendlier!

So, we’re generating sayings. Awesome. But that’s not all your application can do. One of the main reasons for using
Dropwizard is the out-of-the-box operational tools it provides, all of which can be found on the admin port.

If you click through to the metrics resource, you can see all of your application’s metrics represented as a JSON object.

The threads resource allows you to quickly get a thread dump of all the threads running in that process.

Hint: When a Jetty worker thread is handling an incoming HTTP request, the thread name is set to the method and
URI of the request. This can be very helpful when debugging a poorly-behaving request.

The healthcheck resource runs the health check class we wrote. You should see something like this:

* deadlocks: OK

* template: OK

template here is the result of your TemplateHealthCheck, which unsurprisingly passed. deadlocks is a
built-in health check which looks for deadlocked JVM threads and prints out a listing if any are found.

1.9. Running Your Application 13

http://localhost:8080/hello-world
http://localhost:8080/hello-world?name=Successful+Dropwizard+User
http://localhost:8081/
http://localhost:8081/metrics
http://localhost:8081/threads
http://localhost:8081/healthcheck

Dropwizard Documentation, Release 0.7.0

1.10 Next Steps

Well, congratulations. You’ve got a Hello World application ready for production (except for the lack of tests) that’s
capable of doing 30,000-50,000 requests per second. Hopefully you’ve gotten a feel for how Dropwizard combines
Jetty, Jersey, Jackson, and other stable, mature libraries to provide a phenomenal platform for developing RESTful
web applications.

There’s a lot more to Dropwizard than is covered here (commands, bundles, servlets, advanced configuration, valida-
tion, HTTP clients, database clients, views, etc.), all of which is covered by the User Manual.

14 Chapter 1. Getting Started

CHAPTER 2

User Manual

This goal of this document is to provide you with all the information required to build, organize, test, deploy,
and maintain Dropwizard-based applications. If you’re new to Dropwizard, you should read the Getting Started
guide first.

2.1 Dropwizard Core

The dropwizard-core module provides you with everything you’ll need for most of your applications.

It includes:

• Jetty, a high-performance HTTP server.

• Jersey, a full-featured RESTful web framework.

• Jackson, the best JSON library for the JVM.

• Metrics, an excellent library for application metrics.

• Guava, Google’s excellent utility library.

• Logback, the successor to Log4j, Java’s most widely-used logging framework.

• Hibernate Validator, the reference implementation of the Java Bean Validation standard.

Dropwizard consists mostly of glue code to automatically connect and configure these components.

2.1.1 Organizing Your Project

In general, we recommend you separate your projects into three Maven modules: project-api,
project-client, and project-application.

project-api should contain your Representations; project-client should use those classes and an HTTP
client to implement a full-fledged client for your application, and project-application should provide the
actual application implementation, including Resources.

Our applications tend to look like this:

• com.example.myapplication:

– api: Representations.

– cli: Commands

– client: Client implementation for your application

15

Dropwizard Documentation, Release 0.7.0

– core: Domain implementation

– jdbi: Database access classes

– health: Health Checks

– resources: Resources

– MyApplication: The application class

– MyApplicationConfiguration: configuration class

2.1.2 Application

The main entry point into a Dropwizard application is, unsurprisingly, the Application class. Each
Application has a name, which is mostly used to render the command-line interface. In the constructor of your
Application you can add Bundles and Commands to your application.

2.1.3 Configuration

Dropwizard provides a number of built-in configuration parameters. They are well documented in the example
project’s configuration.

Each Application subclass has a single type parameter: that of its matching Configuration subclass. These
are usually at the root of your application’s main package. For example, your User application would have two
classes: UserApplicationConfiguration, extending Configuration, and UserApplication, ex-
tending Application<UserApplicationConfiguration>.

When your application runs Configured Commands like the server command, Dropwizard parses the provided
YAML configuration file and builds an instance of your application’s configuration class by mapping YAML field
names to object field names.

Note: If your configuration file doesn’t end in .yml or .yaml, Dropwizard tries to parse it as a JSON file.

In order to keep your configuration file and class manageable, we recommend grouping related configuration param-
eters into independent configuration classes. If your application requires a set of configuration parameters in order to
connect to a message queue, for example, we recommend that you create a new MessageQueueFactory class:

public class MessageQueueFactory {
@NotEmpty
private String host;

@Min(1)
@Max(65535)
private int port = 5672;

@JsonProperty
public String getHost() {

return host;
}

@JsonProperty
public void setHost(String host) {

this.host = host;
}

16 Chapter 2. User Manual

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-example/example.yml

Dropwizard Documentation, Release 0.7.0

@JsonProperty
public int getPort() {

return port;
}

@JsonProperty
public void setPort(int port) {

this.port = port;
}

public MessageQueueClient build(Environment environment) {
MessageQueueClient client = new MessageQueueClient(getHost(), getPort());
environment.lifecycle().manage(new Managed() {

@Override
public void start() {
}

@Override
public void stop() {

client.close();
}

};
return client;

}
}

In this example our factory will automatically tie our MessageQueueClient connection to the lifecycle of our
application’s Environment.

Your main Configuration subclass can then include this as a member field:

public class ExampleApplicationConfiguration extends Configuration {
@Valid
@NotNull
private MessageQueueFactory messageQueue = new MessageQueueFactory();

@JsonProperty("messageQueue")
public MessageQueueFactory getMessageQueueFactory() {

return messageQueue;
}

@JsonProperty("messageQueue")
public void setMessageQueueFactory(MessageQueueFactory factory) {

this.messageQueue = factory;
}

}

And your Application subclass can then use your factory to directly construct a client for the message queue:

public void run(ExampleConfiguration configuration,
Environment environment) {

MessageQueueClient messageQueue = configuration.getMessageQueueFactory().build(environment);
}

Then, in your application’s YAML file, you can use a nested messageQueue field:

messageQueue:
host: mq.example.com
port: 5673

2.1. Dropwizard Core 17

Dropwizard Documentation, Release 0.7.0

The @NotNull, @NotEmpty, @Min, @Max, and @Valid annotations are part of Dropwizard’s Validation function-
ality. If your YAML configuration file’s messageQueue.host field was missing (or was a blank string), Dropwiz-
ard would refuse to start and would output an error message describing the issues.

Once your application has parsed the YAML file and constructed its Configuration instance, Dropwizard then
calls your Application subclass to initialize your application’s Environment.

Note: You can override configuration settings by passing special Java system properties when starting your applica-
tion. Overrides must start with prefix dw., followed by the path to the configuration value being overridden.

For example, to override the Logging level, you could start your application like this:

java -Ddw.logging.level=DEBUG server my-config.json

This will work even if the configuration setting in question does not exist in your config file, in which case it will get
added.

You can override configuration settings in arrays of objects like this:

java -Ddw.server.applicationConnectors[0].port=9090 server my-config.json

You can override configuration settings in maps like this:

java -Ddw.database.properties.hibernate.hbm2ddl.auto=none server
my-config.json

You can also override a configuration setting that is an array of strings by using the ‘,’ character
as an array element separator. For example, to override a configuration setting myapp.myserver.hosts
that is an array of strings in the configuration, you could start your service like this: java
-Ddw.myapp.myserver.hosts=server1,server2,server3 server my-config.json

If you need to use the ‘,’ character in one of the values, you can escape it by using ‘,’ instead.

The array override facility only handles configuration elements that are arrays of simple strings. Also, the setting in
question must already exist in your configuration file as an array; this mechanism will not work if the configuration
key being overridden does not exist in your configuration file. If it does not exist or is not an array setting, it will get
added as a simple string setting, including the ‘,’ characters as part of the string.

SSL

SSL support is built into Dropwizard. You will need to provide your own java keystore, which is outside the scope of
this document (keytool is the command you need). There is a test keystore you can use in the Dropwizard example
project.

server:
applicationConnectors:
- type: https

port: 8443
keyStorePath: example.keystore
keyStorePassword: example
validateCerts: false

2.1.4 Bootstrapping

Before a Dropwizard application can provide the command-line interface, parse a configuration file, or run as a
server, it must first go through a bootstrapping phase. This phase corresponds to your Application subclass’s

18 Chapter 2. User Manual

https://github.com/dropwizard/dropwizard/tree/master/dropwizard-example
https://github.com/dropwizard/dropwizard/tree/master/dropwizard-example

Dropwizard Documentation, Release 0.7.0

initialize method. You can add Bundles, Commands, or register Jackson modules to allow you to include cus-
tom types as part of your configuration class.

2.1.5 Environments

A Dropwizard Environment consists of all the Resources, servlets, filters, Health Checks, Jersey providers, Man-
aged Objects, Tasks, and Jersey properties which your application provides.

Each Application subclass implements a run method. This is where you should be creating new resource in-
stances, etc., and adding them to the given Environment class:

@Override
public void run(ExampleConfiguration config,

Environment environment) {
// encapsulate complicated setup logic in factories
final Thingy thingy = config.getThingyFactory().build();

environment.jersey().register(new ThingyResource(thingy));
environment.healthChecks().register("thingy", new ThingyHealthCheck(thingy));

}

It’s important to keep the run method clean, so if creating an instance of something is complicated, like the Thingy
class above, extract that logic into a factory.

2.1.6 Health Checks

A health check is a runtime test which you can use to verify your application’s behavior in its production environment.
For example, you may want to ensure that your database client is connected to the database:

public class DatabaseHealthCheck extends HealthCheck {
private final Database database;

public DatabaseHealthCheck(Database database) {
this.database = database;

}

@Override
protected Result check() throws Exception {

if (database.isConnected()) {
return Result.healthy();

} else {
return Result.unhealthy("Cannot connect to " + database.getUrl());

}
}

}

You can then add this health check to your application’s environment:

environment.healthChecks().register("database", new DatabaseHealthCheck(database));

By sending a GET request to /healthcheck on the admin port you can run these tests and view the results:

$ curl http://dw.example.com:8081/healthcheck
{"deadlocks":{"healthy":true},"database":{"healthy":true}}

If all health checks report success, a 200 OK is returned. If any fail, a 500 Internal Server Error is
returned with the error messages and exception stack traces (if an exception was thrown).

2.1. Dropwizard Core 19

Dropwizard Documentation, Release 0.7.0

All Dropwizard applications ship with the deadlocks health check installed by default, which uses Java 1.6’s built-
in thread deadlock detection to determine if any threads are deadlocked.

2.1.7 Managed Objects

Most applications involve objects which need to be started and stopped: thread pools, database connections, etc. Drop-
wizard provides the Managed interface for this. You can either have the class in question implement the #start()
and #stop() methods, or write a wrapper class which does so. Adding a Managed instance to your application’s
Environment ties that object’s lifecycle to that of the application’s HTTP server. Before the server starts, the
#start() method is called. After the server has stopped (and after its graceful shutdown period) the #stop()
method is called.

For example, given a theoretical Riak client which needs to be started and stopped:

public class RiakClientManager implements Managed {
private final RiakClient client;

public RiakClientManager(RiakClient client) {
this.client = client;

}

@Override
public void start() throws Exception {

client.start();
}

@Override
public void stop() throws Exception {

client.stop();
}

}

public class MyApplication extends Application<MyConfiguration>{
@Override
public void run(MyApplicationConfiguration configuration, Environment environment) {

RiakClient client = ...;
RiakClientManager riakClientManager = new RiakClientManager(client);
environment.lifecycle().manage(riakClientManager);

}
}

If RiakClientManager#start() throws an exception–e.g., an error connecting to the server–your application
will not start and a full exception will be logged. If RiakClientManager#stop() throws an exception, the
exception will be logged but your application will still be able to shut down.

It should be noted that Environment has built-in factory methods for
ExecutorService and ScheduledExecutorService instances which
are managed. See LifecycleEnvironment#executorService and
LifecycleEnvironment#scheduledExecutorService for details.

2.1.8 Bundles

A Dropwizard bundle is a reusable group of functionality, used to define blocks of an application’s be-
havior. For example, AssetBundle provides a simple way to serve static assets from your application’s
src/main/resources/assets directory as files available from /assets/* in your application.

20 Chapter 2. User Manual

http://riak.basho.com

Dropwizard Documentation, Release 0.7.0

Some bundles require configuration parameters. These bundles implement ConfiguredBundle and will require
your application’s Configuration subclass to implement a specific interface.

Serving Assets

Either your application or your static assets can be served from the root path, but not both. The latter is useful when
using Dropwizard to back a Javascript application. To enable it, move your application to a sub-URL.

server:
type: simple
applicationContextPath: /application/* # Default value*

Then use an extended AssetsBundle constructor to serve resources in the assets folder from the root path.
index.htm is served as the default page.

@Override
public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {

bootstrap.addBundle(new AssetsBundle("/assets/", "/"));
}

When an AssetBundle is added to the application, it is registered as a servlet using a default name of assets. If
the application needs to have multiple AssetBundle instances, the extended constructor should be used to specify
a unique name for the AssetBundle.

@Override
public void initialize(Bootstrap<HelloWorldConfiguration> bootstrap) {

bootstrap.addBundle(new AssetsBundle("/assets/css", "/css", null, "css"));
bootstrap.addBundle(new AssetsBundle("/assets/js", "/js", null, "js"));
bootstrap.addBundle(new AssetsBundle("/assets/fonts", "/fonts", null, "fonts"));

}

2.1.9 Commands

Commands are basic actions which Dropwizard runs based on the arguments provided on the command line. The built-
in server command, for example, spins up an HTTP server and runs your application. Each Command subclass has
a name and a set of command line options which Dropwizard will use to parse the given command line arguments.

public class MyApplication extends Application<MyConfiguration>{
@Override
public void initialize(Bootstrap<DropwizardConfiguration> bootstrap) {

bootstrap.addCommand(new MyCommand());
}

}

Configured Commands

Some commands require access to configuration parameters and should extend the ConfiguredCommand class,
using your application’s Configuration class as its type parameter. Dropwizard will treat the first argument on
the command line as the path to a YAML configuration file, parse and validate it, and provide your command with an
instance of the configuration class.

2.1. Dropwizard Core 21

Dropwizard Documentation, Release 0.7.0

2.1.10 Tasks

A Task is a run-time action your application provides access to on the administrative port via HTTP. All Dropwizard
applications start with the gc task, which explicitly triggers the JVM’s garbage collection. (This is useful, for example,
for running full garbage collections during off-peak times or while the given application is out of rotation.) The
execute method of a Task can be annotated with @Timed, @Metered, and @ExceptionMetered. Dropwizard
will automatically record runtime information about your tasks. Here’s a basic task class:

public class TruncateDatabaseTask extends Task {
private final Database database;

public TruncateDatabaseTask(Database database) {
super('truncate');
this.database = database;

}

@Override
public void execute(ImmutableMultimap<String, String> parameters, PrintWriter output) throws Exception {

this.database.truncate();
}

}

You can then add this task to your application’s environment:

environment.admin().addTask(new TruncateDatabaseTask(database));

Running a task can be done by sending a POST request to /tasks/{task-name} on the admin port. For example:

$ curl -X POST http://dw.example.com:8081/tasks/gc
Running GC...
Done!

2.1.11 Logging

Dropwizard uses Logback for its logging backend. It provides an slf4j implementation, and even routes all
java.util.logging, Log4j, and Apache Commons Logging usage through Logback.

slf4j provides the following logging levels:

ERROR Error events that might still allow the application to continue running.

WARN Potentially harmful situations.

INFO Informational messages that highlight the progress of the application at coarse-grained level.

DEBUG Fine-grained informational events that are most useful to debug an application.

TRACE Finer-grained informational events than the DEBUG level.

Log Format

Dropwizard’s log format has a few specific goals:

• Be human readable.

• Be machine parsable.

• Be easy for sleepy ops folks to figure out why things are pear-shaped at 3:30AM using standard UNIXy tools
like tail and grep.

22 Chapter 2. User Manual

http://logback.qos.ch/
http://www.slf4j.org/

Dropwizard Documentation, Release 0.7.0

The logging output looks like this:

TRACE [2010-04-06 06:42:35,271] com.example.dw.Thing: Contemplating doing a thing.
DEBUG [2010-04-06 06:42:35,274] com.example.dw.Thing: About to do a thing.
INFO [2010-04-06 06:42:35,274] com.example.dw.Thing: Doing a thing
WARN [2010-04-06 06:42:35,275] com.example.dw.Thing: Doing a thing
ERROR [2010-04-06 06:42:35,275] com.example.dw.Thing: This may get ugly.
! java.lang.RuntimeException: oh noes!
! at com.example.dw.Thing.run(Thing.java:16)
!

A few items of note:

• All timestamps are in UTC and ISO 8601 format.

• You can grep for messages of a specific level really easily:

tail -f dw.log | grep '^WARN'

• You can grep for messages from a specific class or package really easily:

tail -f dw.log | grep 'com.example.dw.Thing'

• You can even pull out full exception stack traces, plus the accompanying log message:

tail -f dw.log | grep -B 1 '^\!'

• The ! prefix does not apply to syslog appenders, as stack traces are sent separately from the main message.
Instead, t is used (this is the default value of the SyslogAppender that comes with Logback). This can be
configured with the stackTracePrefix option when defining your appender.

Configuration

You can specify a default logger level and even override the levels of other loggers in your YAML configuration file:

Logging settings.
logging:

The default level of all loggers. Can be OFF, ERROR, WARN, INFO, DEBUG, TRACE, or ALL.
level: INFO

Logger-specific levels.
loggers:

Overrides the level of com.example.dw.Thing and sets it to DEBUG.
"com.example.dw.Thing": DEBUG

Console Logging

By default, Dropwizard applications log INFO and higher to STDOUT. You can configure this by editing the logging
section of your YAML configuration file:

logging:
appenders:
- type: console

threshold: WARN
target: stderr

In the above, we’re instead logging only WARN and ERROR messages to the STDERR device.

2.1. Dropwizard Core 23

Dropwizard Documentation, Release 0.7.0

File Logging

Dropwizard can also log to an automatically rotated set of log files. This is the recommended configuration for your
production environment:

logging:

appenders:
- type: file

The file to which current statements will be logged.
currentLogFilename: ./logs/example.log

When the log file rotates, the archived log will be renamed to this and gzipped. The
%d is replaced with the previous day (yyyy-MM-dd). Custom rolling windows can be created
by passing a SimpleDateFormat-compatible format as an argument: "%d{yyyy-MM-dd-hh}".
archivedLogFilenamePattern: ./logs/example-%d.log.gz

The number of archived files to keep.
archivedFileCount: 5

The timezone used to format dates. HINT: USE THE DEFAULT, UTC.
timeZone: UTC

Syslog Logging

Finally, Dropwizard can also log statements to syslog.

Note: Because Java doesn’t use the native syslog bindings, your syslog server must have an open network socket.

logging:

appenders:
- type: syslog

The hostname of the syslog server to which statements will be sent.
N.B.: If this is the local host, the local syslog instance will need to be configured to
listen on an inet socket, not just a Unix socket.
host: localhost

The syslog facility to which statements will be sent.
facility: local0

You can combine any number of different appenders, including multiple instances of the same appender with
different configurations:

logging:

Permit DEBUG, INFO, WARN and ERROR messages to be logged by appenders.
level: DEBUG

appenders:
Log warnings and errors to stderr
- type: console

threshold: WARN
target: stderr

Log info, warnings and errors to our apps' main log.

24 Chapter 2. User Manual

Dropwizard Documentation, Release 0.7.0

Rolled over daily and retained for 5 days.
- type: file

threshold: INFO
currentLogFilename: ./logs/example.log
archivedLogFilenamePattern: ./logs/example-%d.log.gz
archivedFileCount: 5

Log debug messages, info, warnings and errors to our apps' debug log.
Rolled over hourly and retained for 6 hours
- type: file

threshold: DEBUG
currentLogFilename: ./logs/debug.log
archivedLogFilenamePattern: ./logs/debug-%d{yyyy-MM-dd-hh}.log.gz
archivedFileCount: 6

2.1.12 Testing Applications

All of Dropwizard’s APIs are designed with testability in mind, so even your applications can have unit tests:

public class MyApplicationTest {
private final Environment environment = mock(Environment.class);
private final JerseyEnvironment jersey = mock(JerseyEnvironment.class);
private final MyApplication application = new MyApplication();
private final MyConfiguration config = new MyConfiguration();

@Before
public void setup() throws Exception {

config.setMyParam("yay");
when(environment.jersey()).thenReturn(jersey);

}

@Test
public void buildsAThingResource() throws Exception {

application.run(config, environment);

verify(jersey).register(any(ThingResource.class));
}

}

We highly recommend Mockito for all your mocking needs.

2.1.13 Banners

We think applications should print out a big ASCII art banner on startup. Yours should, too. It’s fun. Just add a
banner.txt class to src/main/resources and it’ll print it out when your application starts:

INFO [2011-12-09 21:56:37,209] io.dropwizard.cli.ServerCommand: Starting hello-world
dP
88

.d8888b. dP. .dP .d8888b. 88d8b.d8b. 88d888b. 88 .d8888b.
88ooood8 `8bd8' 88' `88 88'`88'`88 88' `88 88 88ooood8
88.d88b. 88. .88 88 88 88 88. .88 88 88. ...
`88888P' dP' `dP `88888P8 dP dP dP 88Y888P' dP `88888P'

88
dP

2.1. Dropwizard Core 25

http://code.google.com/p/mockito/

Dropwizard Documentation, Release 0.7.0

INFO [2011-12-09 21:56:37,214] org.eclipse.jetty.server.Server: jetty-7.6.0
...

We could probably make up an argument about why this is a serious devops best practice with high ROI and an Agile
Tool, but honestly we just enjoy this.

We recommend you use TAAG for all your ASCII art banner needs.

2.1.14 Resources

Unsurprisingly, most of your day-to-day work with a Dropwizard application will be in the resource classes, which
model the resources exposed in your RESTful API. Dropwizard uses Jersey for this, so most of this section is just
re-hashing or collecting various bits of Jersey documentation.

Jersey is a framework for mapping various aspects of incoming HTTP requests to POJOs and then mapping various
aspects of POJOs to outgoing HTTP responses. Here’s a basic resource class:

@Path("/{user}/notifications")
@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)
public class NotificationsResource {

private final NotificationStore store;

public NotificationsResource(NotificationStore store) {
this.store = store;

}

@GET
public NotificationList fetch(@PathParam("user") LongParam userId,

@QueryParam("count") @DefaultValue("20") IntParam count) {
final List<Notification> notifications = store.fetch(userId.get(), count.get());
if (notifications != null) {

return new NotificationList(userId, notifications);
}
throw new WebApplicationException(Status.NOT_FOUND);

}

@POST
public Response add(@PathParam("user") LongParam userId,

@Valid Notification notification) {
final long id = store.add(userId.get(), notification);
return Response.created(UriBuilder.fromResource(NotificationResource.class)

.build(userId.get(), id))
.build();

}
}

This class provides a resource (a user’s list of notifications) which responds to GET and POST requests to
/{user}/notifications, providing and consuming application/json representations. There’s quite a
lot of functionality on display here, and this section will explain in detail what’s in play and how to use these features
in your application.

Paths

Important: Every resource class must have a @Path annotation.

26 Chapter 2. User Manual

http://patorjk.com/software/taag/
http://jersey.java.net/

Dropwizard Documentation, Release 0.7.0

The @Path annotation isn’t just a static string, it’s a URI Template. The {user} part denotes a named variable, and
when the template matches a URI the value of that variable will be accessible via @PathParam-annotated method
parameters.

For example, an incoming request for /1001/notifications would match the URI template, and the value
"1001" would be available as the path parameter named user.

If your application doesn’t have a resource class whose @Path URI template matches the URI of an incoming request,
Jersey will automatically return a 404 Not Found to the client.

Methods

Methods on a resource class which accept incoming requests are annotated with the HTTP methods they handle:
@GET, @POST, @PUT, @DELETE, @HEAD, @OPTIONS, @PATCH.

Support for arbitrary new methods can be added via the @HttpMethod annotation. They also must to be added to
the list of allowed methods. This means, by default, methods such as CONNECT and TRACE are blocked, and will
return a 405 Method Not Allowed response.

If a request comes in which matches a resource class’s path but has a method which the class doesn’t support, Jersey
will automatically return a 405 Method Not Allowed to the client.

The return value of the method (in this case, a NotificationList instance) is then mapped to the negotiated
media type this case, our resource only supports JSON, and so the NotificationList is serialized to JSON using
Jackson.

Metrics

Every resource method can be annotated with @Timed, @Metered, and @ExceptionMetered. Dropwizard
augments Jersey to automatically record runtime information about your resource methods.

Parameters

The annotated methods on a resource class can accept parameters which are mapped to from aspects of the incoming
request. The *Param annotations determine which part of the request the data is mapped, and the parameter type
determines how the data is mapped.

For example:

• A @PathParam("user")-annotated String takes the raw value from the user variable in the matched
URI template and passes it into the method as a String.

• A @QueryParam("count")-annotated IntParam parameter takes the first count value from the re-
quest’s query string and passes it as a String to IntParam‘s constructor. IntParam (and all other
io.dropwizard.jersey.params.* classes) parses the string as an Integer, returning a 400 Bad
Request if the value is malformed.

• A @FormParam("name")-annotated Set<String> parameter takes all the name values from a posted
form and passes them to the method as a set of strings.

What’s noteworthy here is that you can actually encapsulate the vast majority of your validation logic using specialized
parameter objects. See AbstractParam for details.

2.1. Dropwizard Core 27

http://tools.ietf.org/html/draft-gregorio-uritemplate-07

Dropwizard Documentation, Release 0.7.0

Request Entities

If you’re handling request entities (e.g., an application/json object on a PUT request), you can model this as a
parameter without a *Param annotation. In the example code, the add method provides a good example of this:

@POST
public Response add(@PathParam("user") LongParam userId,

@Valid Notification notification) {
final long id = store.add(userId.get(), notification);
return Response.created(UriBuilder.fromResource(NotificationResource.class)

.build(userId.get(), id)
.build();

}

Jersey maps the request entity to any single, unbound parameter. In this case, because the resource is annotated with
@Consumes(MediaType.APPLICATION_JSON), it uses the Dropwizard-provided Jackson support which, in
addition to parsing the JSON and mapping it to an instance of Notification, also runs that instance through
Dropwizard’s Validation.

If the deserialized Notification isn’t valid, Dropwizard returns a 422 Unprocessable Entity response to
the client.

Note: If your request entity parameter isn’t annotated with @Valid, it won’t be validated.

Media Types

Jersey also provides full content negotiation, so if your resource class consumes application/json but the client
sends a text/plain entity, Jersey will automatically reply with a 406 Not Acceptable. Jersey’s even smart
enough to use client-provided q-values in their Accept headers to pick the best response content type based on what
both the client and server will support.

Responses

If your clients are expecting custom headers or additional information (or, if you simply desire an additional degree of
control over your responses), you can return explicitly-built Response objects:

return Response.noContent().language(Locale.GERMAN).build();

In general, though, we recommend you return actual domain objects if at all possible. It makes testing resources much
easier.

Error Handling

If your resource class unintentionally throws an exception, Dropwizard will log that exception (including stack traces)
and return a terse, safe text/plain 500 Internal Server Error response.

If your resource class needs to return an error to the client (e.g., the requested record doesn’t exist), you have two
options: throw a subclass of Exception or restructure your method to return a Response.

If at all possible, prefer throwing Exception instances to returning Response objects.

If you throw a subclass of WebApplicationException jersey will map that to a defined response.

If you want more control, you can also declare JerseyProviders in your Environment to map Exceptions
to certain responses by calling JerseyEnvironment#register(Object) with an implementation of

28 Chapter 2. User Manual

Dropwizard Documentation, Release 0.7.0

javax.ws.rs.ext.ExceptionMapper. e.g. Your resource throws an InvalidArgumentException, but the response would
be 400, bad request.

URIs

While Jersey doesn’t quite have first-class support for hyperlink-driven applications, the provided UriBuilder
functionality does quite well.

Rather than duplicate resource URIs, it’s possible (and recommended!) to initialize a UriBuilder with the path
from the resource class itself:

UriBuilder.fromResource(UserResource.class).build(user.getId());

Testing

As with just about everything in Dropwizard, we recommend you design your resources to be testable. Dependencies
which aren’t request-injected should be passed in via the constructor and assigned to final fields.

Testing, then, consists of creating an instance of your resource class and passing it a mock. (Again: Mockito.)

public class NotificationsResourceTest {
private final NotificationStore store = mock(NotificationStore.class);
private final NotificationsResource resource = new NotificationsResource(store);

@Test
public void getsReturnNotifications() {

final List<Notification> notifications = mock(List.class);
when(store.fetch(1, 20)).thenReturn(notifications);

final NotificationList list = resource.fetch(new LongParam("1"), new IntParam("20"));

assertThat(list.getUserId(),
is(1L));

assertThat(list.getNotifications(),
is(notifications));

}
}

Caching

Adding a Cache-Control statement to your resource class is simple with Dropwizard:

@GET
@CacheControl(maxAge = 6, maxAgeUnit = TimeUnit.HOURS)
public String getCachableValue() {

return "yay";
}

The @CacheControl annotation will take all of the parameters of the Cache-Control header.

2.1.15 Representations

Representation classes are classes which, when handled to various Jersey MessageBodyReader and
MessageBodyWriter providers, become the entities in your application’s API. Dropwizard heavily favors JSON,

2.1. Dropwizard Core 29

http://code.google.com/p/mockito/

Dropwizard Documentation, Release 0.7.0

but it’s possible to map from any POJO to custom formats and back.

Basic JSON

Jackson is awesome at converting regular POJOs to JSON and back. This file:

public class Notification {
private String text;

public Notification(String text) {
this.text = text;

}

@JsonProperty
public String getText() {

return text;
}

@JsonProperty
public void setText(String text) {

this.text = text;
}

}

gets converted into this JSON:

{
"text": "hey it's the value of the text field"

}

If, at some point, you need to change the JSON field name or the Java field without affecting the other, you can add an
explicit field name to the @JsonProperty annotation.

If you prefer immutable objects rather than JavaBeans, that’s also doable:

public class Notification {
private final String text;

@JsonCreator
public Notification(@JsonProperty("text") String text) {

this.text = text;
}

@JsonProperty("text")
public String getText() {

return text;
}

}

Advanced JSON

Not all JSON representations map nicely to the objects your application deals with, so it’s sometimes necessary to use
custom serializers and deserializers. Just annotate your object like this:

@JsonSerialize(using=FunkySerializer.class)
@JsonDeserialize(using=FunkyDeserializer.class)
public class Funky {

30 Chapter 2. User Manual

Dropwizard Documentation, Release 0.7.0

// ...
}

Then make a FunkySerializer class which implements JsonSerializer<Funky> and a
FunkyDeserializer class which implements JsonDeserializer<Funky>.

snake_case

A common issue with JSON is the disagreement between camelCase and snake_case field names. Java and
Javascript folks tend to like camelCase; Ruby, Python, and Perl folks insist on snake_case. To make Dropwizard
automatically convert field names to snake_case (and back), just annotate the class with @JsonSnakeCase:

@JsonSnakeCase
public class Person {

private final String firstName;

@JsonCreator
public Person(@JsonProperty String firstName) {

this.firstName = firstName;
}

@JsonProperty
public String getFirstName() {

return firstName;
}

}

This gets converted into this JSON:

{
"first_name": "Coda"

}

Validation

Like Configuration, you can add validation annotations to fields of your representation classes and validate them. If
we’re accepting client-provided Person objects, we probably want to ensure that the name field of the object isn’t
null or blank. We can do this as follows:

public class Person {

@NotEmpty // ensure that name isn't null or blank
private final String name;

@JsonCreator
public Person(@JsonProperty("name") String name) {

this.name = name;
}

@JsonProperty("name")
public String getName() {

return name;
}

}

Then, in our resource class, we can add the @Valid annotation to the Person annotation:

2.1. Dropwizard Core 31

Dropwizard Documentation, Release 0.7.0

@PUT
public Response replace(@Valid Person person) {

// ...
}

If the name field is missing, Dropwizard will return a text/plain 422 Unprocessable Entity response
detailing the validation errors:

* name may not be empty

Advanced

More complex validations (for example, cross-field comparisons) are often hard to do using declarative annotations.
As an emergency maneuver, add the @ValidationMethod to any boolean-returning method which begins with
is:

@ValidationMethod(message="may not be Coda")
public boolean isNotCoda() {

return !("Coda".equals(name));
}

Note: Due to the rather daft JavaBeans conventions, the method must begin with is (e.g.,
#isValidPortRange(). This is a limitation of Hibernate Validator, not Dropwizard.

Streaming Output

If your application happens to return lots of information, you may get a big performance and efficiency bump by using
streaming output. By returning an object which implements Jersey’s StreamingOutput interface, your method
can stream the response entity in a chunk-encoded output stream. Otherwise, you’ll need to fully construct your return
value and then hand it off to be sent to the client.

HTML Representations

For generating HTML pages, check out Dropwizard’s views support.

Custom Representations

Sometimes, though, you’ve got some wacky output format you need to produce or consume and no amount of arguing
will make JSON acceptable. That’s unfortunate but OK. You can add support for arbitrary input and output for-
mats by creating classes which implement Jersey’s MessageBodyReader<T> and MessageBodyWriter<T>
interfaces. (Make sure they’re annotated with @Provider and @Produces("text/gibberish") or
@Consumes("text/gibberish").) Once you’re done, just add instances of them (or their classes if they depend
on Jersey’s @Context injection) to your application’s Environment on initialization.

Jersey filters

There might be cases when you want to filter out requests or modify them before they reach your Resources. Jersey
provides you with the means to do so. If you want to stop the request from reaching your resources, throw a web-
application WebApplicationException, if you want to modify the request or let it pass through the filter, return
it.

32 Chapter 2. User Manual

Dropwizard Documentation, Release 0.7.0

public class DateNotSpecifiedFilter implements ContainerRequestFilter {

@Context ExtendedUriInfo extendedUriInfo;

@Override
public ContainerRequest filter(ContainerRequest request) {

boolean methodNeedsDateHeader = extendedUriInfo.getMatchedMethod().isAnnotationPresent(DateRequired.class);
String dateHeader = request.getHeaderValue(HttpHeaders.DATE);

if (methodNeedsDateHeader && dateHeader == null) {
Exception cause = new IllegalArgumentException("Date Header was not specified");
throw new WebApplicationException(cause, Response.Status.BAD_REQUEST);

} else {
return request;

}
}

}

This example checks the request for the “Date” header, and denies the request if was ommitted and the method this
request would call has a certain annotation present. You can then register this filter in your Application class, like so:

environment.jersey().getResourceConfig().getContainerRequestFilters().add(new DateNotSpecifiedFilter());

Servlet filters

Another way to create filters is by creating servlet filters. They offer a way to to register filters that apply both to servlet
requests as well as resource requests. Jetty comes with a few bundled filters which may already suit your needs. If you
want to create your own filter, this example demonstrates a servlet filter analogous to the previous example:

public class DateNotSpecifiedServletFilter implements javax.servlet.Filter {
// Other methods in interface ommited for brevity

@Override
public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws IOException, ServletException {

if (request instanceof HttpServletRequest) {
String dateHeader = ((HttpServletRequest) request).getHeader(HttpHeaders.DATE);

if (dateHeader == null) {
chain.doFilter(request, response); // This signals that the request should pass this filter

} else {
HttpServletResponse httpResponse = (HttpServletResponse) response;
httpResponse.setStatus(HttpStatus.BAD_REQUEST_400);
httpResponse.getWriter().print("Date Header was not specified");

}
}

}
}

This servlet filter can then be registered in your Application class by wrapping it in FilterHolder and adding it to
the application context together with a specification for which paths this filter should active. Here’s an example:

environment.servlets().addFilter("DateHeaderServletFilter", new DateHeaderServletFilter())
.addMappingForUrlPatterns(EnumSet.of(DispatcherType.REQUEST), true, "/*");

2.1. Dropwizard Core 33

http://www.eclipse.org/jetty/documentation/current/advanced-extras.html

Dropwizard Documentation, Release 0.7.0

2.1.16 How it’s glued together

When your application starts up, it will spin up a Jetty HTTP server, see DefaultServerFactory. This server
will have two handlers, one for your application port and the other for your admin port. The admin handler creates
and registers the AdminServlet. This has a handle to all of the application healthchecks and metrics via the
ServletContext.

The application port has an HttpServlet as well, this is composed of DropwizardResourceConfig, which
is an extension of Jersey’s resource configuration that performs scanning to find root resource and provider
classes. Ultimately when you call env.jersey().register(new SomeResource()), you are adding to
the DropwizardResourceConfig. This config is a jersey Application, so all of your application resources
are served from one Servlet

DropwizardResourceConfig is where the various ResourceMethodDispatchAdapter are registered to enable
the following functionality:

• Resource method requests with @Timed, @Metered, @ExceptionMetered are delegated to special dis-
patchers which decorate the metric telemetry

• Resources that return Guava Optional are unboxed. Present returns underlying type, and non present 404s

• Resource methods that are annotated with @CacheControl are delegated to a special dispatcher that decorates
on the cache control headers

• Enables using Jackson to parse request entities into objects and generate response entities from objects, all while
performing validation

2.2 Dropwizard Client

The dropwizard-client module provides you with two different performant, instrumented HTTP clients so
you can integrate your service with other web services: Apache HttpClient, version 4.3 and Jersey Client,
version 1.18.

2.2.1 Apache HttpClient, version 4.3

The underlying library for dropwizard-client is Apache’s HttpClient, a full-featured, well-tested HTTP client
library.

To create a managed, instrumented HttpClient instance, your configuration class needs an http client configuration
instance:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
@JsonProperty
private HttpClientConfiguration httpClient = new HttpClientConfiguration();

public HttpClientConfiguration getHttpClientConfiguration() {
return httpClient;

}
}

Then, in your application’s run method, create a new HttpClientBuilder:

@Override
public void run(ExampleConfiguration config,

Environment environment) {

34 Chapter 2. User Manual

http://hc.apache.org/httpcomponents-core-4.3.x/index.html

Dropwizard Documentation, Release 0.7.0

final HttpClient httpClient = new HttpClientBuilder(environment).using(config.getHttpClientConfiguration())
.build();

environment.addResource(new ExternalServiceResource(httpClient));
}

Metrics

Dropwizard’s HttpClientBuilder actually gives you an instrumented subclass which tracks the following pieces
of data:

org.apache.http.conn.ClientConnectionManager.available-connections The number the
number idle connections ready to be used to execute requests.

org.apache.http.conn.ClientConnectionManager.leased-connections The number of per-
sistent connections currently being used to execut requests.

org.apache.http.conn.ClientConnectionManager.max-connections The maximum number of
allowed connections.

org.apache.http.conn.ClientConnectionManager.pending-connections The number of con-
nection requests being blocked awaiting a free connection

org.apache.http.client.HttpClient.get-requests The rate at which GET requests are being sent.

org.apache.http.client.HttpClient.post-requests The rate at which POST requests are being
sent.

org.apache.http.client.HttpClient.head-requests The rate at which HEAD requests are being
sent.

org.apache.http.client.HttpClient.put-requests The rate at which PUT requests are being sent.

org.apache.http.client.HttpClient.delete-requests The rate at which DELETE requests are be-
ing sent.

org.apache.http.client.HttpClient.options-requests The rate at which OPTIONS requests are
being sent.

org.apache.http.client.HttpClient.trace-requests The rate at which TRACE requests are being
sent.

org.apache.http.client.HttpClient.connect-requests The rate at which CONNECT requests are
being sent.

org.apache.http.client.HttpClient.move-requests The rate at which MOVE requests are being
sent.

org.apache.http.client.HttpClient.patch-requests The rate at which PATCH requests are being
sent.

org.apache.http.client.HttpClient.other-requests The rate at which requests with none of the
above methods are being sent.

Note: The naming strategy for the metrics associated requests is configurable. Specifically, the last part e.g. get-
requests. What is displayed is HttpClientMetricNameStrategies.METHOD_ONLY, you can also include
the host via HttpClientMetricNameStrategies.HOST_AND_METHOD or a url without query string via
HttpClientMetricNameStrategies.QUERYLESS_URL_AND_METHOD

2.2. Dropwizard Client 35

Dropwizard Documentation, Release 0.7.0

2.2.2 Jersey Client, version 1.18

If HttpClient is too low-level for you, Dropwizard also supports Jersey’s Client API. Jersey’s Client allows you to
use all of the server-side media type support that your service uses to, for example, deserialize application/json
request entities as POJOs.

To create a managed, instrumented JerseyClient instance, your configuration class needs an jersey client config-
uration instance:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
@JsonProperty
private JerseyClientConfiguration httpClient = new JerseyClientConfiguration();

public JerseyClientConfiguration getJerseyClientConfiguration() {
return httpClient;

}
}

Then, in your service’s run method, create a new JerseyClientBuilder:

@Override
public void run(ExampleConfiguration config,

Environment environment) {

final Client client = new JerseyClientBuilder(environment).using(config.getJerseyClientConfiguration())
.build(getName());

environment.addResource(new ExternalServiceResource(client));
}

2.3 Dropwizard JDBI

The dropwizard-jdbi module provides you with managed access to JDBI, a flexible and modular library for
interacting with relational databases via SQL.

2.3.1 Configuration

To create a managed, instrumented DBI instance, your configuration class needs a DataSourceFactory instance:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
@JsonProperty
private DataSourceFactory database = new DataSourceFactory();

public DataSourceFactory getDataSourceFactory() {
return database;

}
}

Then, in your service’s run method, create a new DBIFactory:

@Override
public void run(ExampleConfiguration config,

Environment environment) throws ClassNotFoundException {

36 Chapter 2. User Manual

http://hc.apache.org/httpcomponents-core-4.3.x/index.html
https://jersey.java.net/documentation/1.18/client-api.html

Dropwizard Documentation, Release 0.7.0

final DBIFactory factory = new DBIFactory();
final DBI jdbi = factory.build(environment, config.getDataSourceFactory(), "postgresql");
final UserDAO dao = jdbi.onDemand(UserDAO.class);
environment.jersey().register(new UserResource(dao));

}

This will create a new managed connection pool to the database, a health check for connectivity to the database, and
a new DBI instance for you to use. Note the ClassNotFoundException is thrown by the DBIFactory class
when the build method is unable to locate the JDBC driver class. This will cause the service to exit displaying the
output of the exception.

Your service’s configuration file will then look like this:

database:
the name of your JDBC driver
driverClass: org.postgresql.Driver

the username
user: pg-user

the password
password: iAMs00perSecrEET

the JDBC URL
url: jdbc:postgresql://db.example.com/db-prod

any properties specific to your JDBC driver:
properties:
charSet: UTF-8

the maximum amount of time to wait on an empty pool before throwing an exception
maxWaitForConnection: 1s

the SQL query to run when validating a connection's liveness
validationQuery: "/* MyService Health Check */ SELECT 1"

the minimum number of connections to keep open
minSize: 8

the maximum number of connections to keep open
maxSize: 32

whether or not idle connections should be validated
checkConnectionWhileIdle: false

the amount of time to sleep between runs of the idle connection validation, abandoned cleaner and idle pool resizing
evictionInterval: 10s

the minimum amount of time an connection must sit idle in the pool before it is eligible for eviction
minIdleTime: 1 minute

2.3.2 Usage

We highly recommend you use JDBI’s SQL Objects API, which allows you to write DAO classes as interfaces:

public interface MyDAO {
@SqlUpdate("create table something (id int primary key, name varchar(100))")

2.3. Dropwizard JDBI 37

http://jdbi.org/sql_object_overview/

Dropwizard Documentation, Release 0.7.0

void createSomethingTable();

@SqlUpdate("insert into something (id, name) values (:id, :name)")
void insert(@Bind("id") int id, @Bind("name") String name);

@SqlQuery("select name from something where id = :id")
String findNameById(@Bind("id") int id);

}

final MyDAO dao = database.onDemand(MyDAO.class);

This ensures your DAO classes are trivially mockable, as well as encouraging you to extract mapping code (e.g.,
ResultSet -> domain objects) into testable, reusable classes.

2.3.3 Exception Handling

By adding the DBIExceptionsBundle to your application, Dropwizard will automatically unwrap any thrown
SQLException or DBIException instances. This is critical for debugging, since otherwise only the common
wrapper exception’s stack trace is logged.

2.3.4 Prepended Comments

If you’re using JDBI’s SQL Objects API (and you should be), dropwizard-jdbi will automatically prepend the
SQL object’s class and method name to the SQL query as an SQL comment:

/* com.example.service.dao.UserDAO.findByName */
SELECT id, name, email
FROM users
WHERE name = 'Coda';

This will allow you to quickly determine the origin of any slow or misbehaving queries.

2.3.5 Guava Support

dropwizard-jdbi supports Optional<T> arguments and ImmutableList<T> and ImmutableSet<T>
query results.

2.3.6 Joda Time Support

dropwizard-jdbi supports joda-time DateTime arguments and DateTime fields in query results.

2.4 Dropwizard Migrations

The dropwizard-migrations module provides you with a wrapper for Liquibase database refactoring.

2.4.1 Configuration

Like Dropwizard JDBI, your configuration class needs a DataSourceFactory instance:

38 Chapter 2. User Manual

http://jdbi.org/sql_object_overview/

Dropwizard Documentation, Release 0.7.0

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
@JsonProperty("database")
private DataSourceFactory database = new DataSourceFactory();

public DataSourceFactory getDataSourceFactory() {
return database;

}
}

2.4.2 Adding The Bundle

Then, in your application’s initialize method, add a new MigrationsBundle subclass:

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {

bootstrap.addBundle(new MigrationsBundle<ExampleConfiguration>() {
@Override

public DataSourceFactory getDataSourceFactory(ExampleConfiguration configuration) {
return configuration.getDataSourceFactory();

}
});

}

2.4.3 Defining Migrations

Your database migrations are stored in your Dropwizard project, in src/main/resources/migrations.xml.
This file will be packaged with your application, allowing you to run migrations using your application’s command-
line interface.

For example, to create a new people table, I might create an initial migrations.xml like this:

<?xml version="1.0" encoding="UTF-8"?>

<databaseChangeLog
xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-3.0.xsd">

<changeSet id="1" author="codahale">
<createTable tableName="people">

<column name="id" type="bigint" autoIncrement="true">
<constraints primaryKey="true" nullable="false"/>

</column>
<column name="fullName" type="varchar(255)">

<constraints nullable="false"/>
</column>
<column name="jobTitle" type="varchar(255)"/>

</createTable>
</changeSet>

</databaseChangeLog>

For more information on available database refactorings, check the Liquibase documentation.

2.4. Dropwizard Migrations 39

http://www.liquibase.org

Dropwizard Documentation, Release 0.7.0

2.4.4 Checking Your Database’s State

To check the state of your database, use the db status command:

java -jar hello-world.jar db status helloworld.yml

2.4.5 Dumping Your Schema

If your database already has an existing schema and you’d like to pre-seed your migrations.xml document, you
can run the db dump command:

java -jar hello-world.jar db dump helloworld.yml

This will output a Liquibase change log with a change set capable of recreating your database.

2.4.6 Tagging Your Schema

To tag your schema at a particular point in time (e.g., to make rolling back easier), use the db tag command:

java -jar hello-world.jar db tag helloworld.yml 2012-10-08-pre-user-move

2.4.7 Migrating Your Schema

To apply pending change sets to your database schema, run the db migrate command:

java -jar hello-world.jar db migrate helloworld.yml

Warning: This will potentially make irreversible changes to your database. Always check the pending DDL
scripts by using the --dry-run flag first. This will output the SQL to be run to stdout.

Note: To apply only a specific number of pending change sets, use the --count flag.

2.4.8 Rolling Back Your Schema

To roll back change sets which have already been applied, run the db rollback command. You will need to specify
either a tag, a date, or a number of change sets to roll back to:

java -jar hello-world.jar db rollback helloworld.yml --tag 2012-10-08-pre-user-move

Warning: This will potentially make irreversible changes to your database. Always check the pending DDL
scripts by using the --dry-run flag first. This will output the SQL to be run to stdout.

2.4.9 Testing Migrations

To verify that a set of pending change sets can be fully rolled back, use the db test command, which will migrate
forward, roll back to the original state, then migrate forward again:

40 Chapter 2. User Manual

http://www.liquibase.org

Dropwizard Documentation, Release 0.7.0

java -jar hello-world.jar db test helloworld.yml

Warning: Do not run this in production, for obvious reasons.

2.4.10 Preparing A Rollback Script

To prepare a rollback script for pending change sets before they have been applied, use the db prepare-rollback
command:

java -jar hello-world.jar db prepare-rollback helloworld.yml

This will output a DDL script to stdout capable of rolling back all unapplied change sets.

2.4.11 Generating Documentation

To generate HTML documentation on the current status of the database, use the db generate-docs command:

java -jar hello-world.jar db generate-docs helloworld.yml ~/db-docs/

2.4.12 Dropping All Objects

To drop all objects in the database, use the db drop-all command:

java -jar hello-world.jar db drop-all --confirm-delete-everything helloworld.yml

Warning: You need to specify the --confirm-delete-everything flag because this command deletes
everything in the database. Be sure you want to do that first.

2.4.13 Fast-Forwarding Through A Change Set

To mark a pending change set as applied (e.g., after having backfilled your migrations.xml with db dump), use
the db fast-forward command:

java -jar hello-world.jar db fast-forward helloworld.yml

This will mark the next pending change set as applied. You can also use the --all flag to mark all pending change
sets as applied.

2.4.14 More Information

If you are using databases supporting multiple schemas like PostgreSQL, Oracle, or H2, you can use the optional
--catalog and --schema arguments to specify the database catalog and schema used for the Liquibase com-
mands.

For more information on available commands, either use the db --help command, or for more detailed help on a
specific command, use db <cmd> --help.

2.4. Dropwizard Migrations 41

Dropwizard Documentation, Release 0.7.0

2.5 Dropwizard Hibernate

The dropwizard-hibernate module provides you with managed access to Hibernate, a powerful, industry-
standard object-relation mapper (ORM).

2.5.1 Configuration

To create a managed, instrumented SessionFactory instance, your configuration class needs a
DataSourceFactory instance:

public class ExampleConfiguration extends Configuration {
@Valid
@NotNull
@JsonProperty("database")
private DataSourceFactory database = new DataSourceFactory();

public DataSourceFactory getDataSourceFactory() {
return database;

}
}

Then, add a HibernateBundle instance to your application class, specifying your entity classes and how to get a
DataSourceFactory from your configuration subclass:

private final HibernateBundle<ExampleConfiguration> hibernate = new HibernateBundle<ExampleConfiguration>(Person.class) {
@Override
public DataSourceFactory getDataSourceFactory(ExampleConfiguration configuration) {

return configuration.getDataSourceFactory();
}

};

@Override
public void initialize(Bootstrap<ExampleConfiguration> bootstrap) {

bootstrap.addBundle(hibernate);
}

@Override
public void run(ExampleConfiguration config,

Environment environment) throws ClassNotFoundException {
final UserDAO dao = new UserDAO(hibernate.getSessionFactory());
environment.jersey().register(new UserResource(dao));

}

This will create a new managed connection pool to the database, a health check for connectivity to the database, and
a new SessionFactory instance for you to use in your DAO classes.

Your application’s configuration file will then look like this:

database:
the name of your JDBC driver
driverClass: org.postgresql.Driver

the username
user: pg-user

the password
password: iAMs00perSecrEET

42 Chapter 2. User Manual

Dropwizard Documentation, Release 0.7.0

the JDBC URL
url: jdbc:postgresql://db.example.com/db-prod

any properties specific to your JDBC driver:
properties:
charSet: UTF-8
hibernate.dialect: org.hibernate.dialect.PostgreSQLDialect

the maximum amount of time to wait on an empty pool before throwing an exception
maxWaitForConnection: 1s

the SQL query to run when validating a connection's liveness
validationQuery: "/* MyApplication Health Check */ SELECT 1"

the minimum number of connections to keep open
minSize: 8

the maximum number of connections to keep open
maxSize: 32

whether or not idle connections should be validated
checkConnectionWhileIdle: false

2.5.2 Usage

Data Access Objects

Dropwizard comes with AbstractDAO, a minimal template for entity-specific DAO classes. It contains type-safe
wrappers for most of SessionFactory‘s common operations:

public class PersonDAO extends AbstractDAO<Person> {
public PersonDAO(SessionFactory factory) {

super(factory);
}

public Person findById(Long id) {
return get(id);

}

public long create(Person person) {
return persist(person).getId();

}

public List<Person> findAll() {
return list(namedQuery("com.example.helloworld.core.Person.findAll"));

}
}

Transactional Resource Methods

Dropwizard uses a declarative method of scoping transactional boundaries. Not all resource methods actually require
database access, so the @UnitOfWork annotation is provided:

@GET
@Timed

2.5. Dropwizard Hibernate 43

Dropwizard Documentation, Release 0.7.0

@UnitOfWork
public Person findPerson(@PathParam("id") LongParam id) {

return dao.findById(id.get());
}

This will automatically open a session, begin a transaction, call findByPerson, commit the transaction, and finally
close the session. If an exception is thrown, the transaction is rolled back.

Important: The Hibernate session is closed before your resource method’s return value (e.g., the Person from the
database), which means your resource method (or DAO) is responsible for initializing all lazily-loaded collections,
etc., before returning. Otherwise, you’ll get a LazyInitializationException thrown in your template (or
null values produced by Jackson).

2.5.3 Prepended Comments

Dropwizard automatically configures Hibernate to prepend a comment describing the context of all queries:

/* load com.example.helloworld.core.Person */
select

person0_.id as id0_0_,
person0_.fullName as fullName0_0_,
person0_.jobTitle as jobTitle0_0_

from people person0_
where person0_.id=?

This will allow you to quickly determine the origin of any slow or misbehaving queries.

2.6 Dropwizard Authentication

The dropwizard-auth client provides authentication using either HTTP Basic Authentication or OAuth2 bearer
tokens.

2.6.1 Authenticators

An authenticator is a strategy class which, given a set of client-provided credentials, possibly returns a principal (i.e.,
the person or entity on behalf of whom your service will do something).

Authenticators implement the Authenticator<C, P> interface, which has a single method:

public class SimpleAuthenticator implements Authenticator<BasicCredentials, User> {
@Override
public Optional<User> authenticate(BasicCredentials credentials) throws AuthenticationException {

if ("secret".equals(credentials.getPassword())) {
return Optional.of(new User(credentials.getUsername()));

}
return Optional.absent();

}
}

This authenticator takes basic auth credentials and if the client-provided password is secret, authenticates the client
as a User with the client-provided username.

If the password doesn’t match, an absent Optional is returned instead, indicating that the credentials are invalid.

44 Chapter 2. User Manual

Dropwizard Documentation, Release 0.7.0

Warning: It’s important for authentication services to not provide too much information in their errors. The
fact that a username or email has an account may be meaningful to an attacker, so the Authenticator inter-
face doesn’t allow you to distinguish between a bad username and a bad password. You should only throw an
AuthenticationException if the authenticator is unable to check the credentials (e.g., your database is
down).

Caching

Because the backing data stores for authenticators may not handle high throughput (an RDBMS or LDAP server, for
example), Dropwizard provides a decorator class which provides caching:

CachingAuthenticator.wrap(ldapAuthenticator,
config.getAuthenticationCachePolicy());

Dropwizard can parse Guava’s CacheBuilderSpec from the configuration policy, allowing your configuration file
to look like this:

authenticationCachePolicy: maximumSize=10000, expireAfterAccess=10m

This caches up to 10,000 principals with an LRU policy, evicting stale entries after 10 minutes.

2.6.2 Basic Authentication

The BasicAuthProvider enables HTTP Basic authentication, and requires an authenticator which takes instances
of BasicCredentials:

@Override
public void run(ExampleConfiguration configuration,

Environment environment) {
environment.jersey().register(new BasicAuthProvider<User>(new ExampleAuthenticator(),

"SUPER SECRET STUFF"));
}

2.6.3 OAuth2

The OAuthProvider enables OAuth2 bearer-token authentication, and requires an authenticator which takes an
instance of String.

@Override
public void run(ExampleConfiguration configuration,

Environment environment) {
environment.jersey().register(new OAuthProvider<User>(new ExampleAuthenticator(),

"SUPER SECRET STUFF"));
}

2.6.4 Protecting Resources

To protect a resource, simply include an @Auth-annotated principal as one of your resource method parameters:

@GET
public SecretPlan getSecretPlan(@Auth User user) {

return dao.findPlanForUser(user);
}

2.6. Dropwizard Authentication 45

Dropwizard Documentation, Release 0.7.0

If there are no provided credentials for the request, or if the credentials are invalid, the provider will return a scheme-
appropriate 401 Unauthorized response without calling your resource method.

If you have a resource which is optionally protected (e.g., you want to display a logged-in user’s name but not require
login), set the required attribute of the annotation to false:

@GET
public HomepageView getHomepage(@Auth(required = false) User user) {

return new HomepageView(Optional.fromNullable(user));
}

If there is no authenticated principal, null is used instead, and your resource method is still called.

2.7 Dropwizard Views

The dropwizard-views-mustache & dropwizard-views-freemarker modules provides you with simple,
fast HTML views using either FreeMarker or Mustache.

To enable views for your Application, add the ViewBundle in the initialize method of your Application class:

public void initialize(Bootstrap<MyConfiguration> bootstrap) {
bootstrap.addBundle(new ViewBundle());

}

Then, in your resource method, add a View class:

public class PersonView extends View {
private final Person person;

public PersonView(Person person) {
super("person.ftl");
this.person = person;

}

public Person getPerson() {
return person;

}
}

person.ftl is the path of the template relative to the class name. If this class
was com.example.service.PersonView, Dropwizard would then look for the file
src/main/resources/com/example/service/person.ftl.

If your template ends with .ftl, it’ll be interpreted as a FreeMarker template. If it ends with .mustache, it’ll be
interpreted as a Mustache template.

Tip: Dropwizard Views also support localized template files. It picks up the client’s locale from their
Accept-Language, so you can add a French template in person_fr.ftl or a Canadian template in
person_en_CA.ftl.

Your template file might look something like this:

<#-- @ftlvariable name="" type="com.example.views.PersonView" -->
<html>

<body>
<!-- calls getPerson().getName() and sanitizes it -->

46 Chapter 2. User Manual

http://FreeMarker.sourceforge.net/

Dropwizard Documentation, Release 0.7.0

<h1>Hello, ${person.name?html}!</h1>
</body>

</html>

The @ftlvariable lets FreeMarker (and any FreeMarker IDE plugins you may be using) know that the root
object is a com.example.views.PersonView instance. If you attempt to call a property which doesn’t exist on
PersonView – getConnectionPool(), for example – it will flag that line in your IDE.

Once you have your view and template, you can simply return an instance of your View subclass:

@Path("/people/{id}")
@Produces(MediaType.TEXT_HTML)
public class PersonResource {

private final PersonDAO dao;

public PersonResource(PersonDAO dao) {
this.dao = dao;

}

@GET
public PersonView getPerson(@PathParam("id") String id) {

return new PersonView(dao.find(id));
}

}

Tip: Jackson can also serialize your views, allowing you to serve both text/html and application/json
with a single representation class.

For more information on how to use FreeMarker, see the FreeMarker documentation.

For more information on how to use Mustache, see the Mustache and Mustache.java documentation.

2.8 Dropwizard & Scala

The dropwizard-scala module is now maintained and documented elsewhere.

2.9 Testing Dropwizard

The dropwizard-testing module provides you with some handy classes for testing your representation
classes and resource classes. It also provides a JUnit rule for full-stack testing of your entire app.

2.9.1 Testing Representations

While Jackson’s JSON support is powerful and fairly easy-to-use, you shouldn’t just rely on eyeballing your rep-
resentation classes to ensure you’re actually producing the API you think you are. By using the helper methods in
FixtureHelpers you can add unit tests for serializing and deserializing your representation classes to and from JSON.

Let’s assume we have a Person class which your API uses as both a request entity (e.g., when writing via a PUT
request) and a response entity (e.g., when reading via a GET request):

2.8. Dropwizard & Scala 47

http://FreeMarker.sourceforge.net/
http://mustache.github.com/mustache.5.html
https://github.com/spullara/mustache.java

Dropwizard Documentation, Release 0.7.0

public class Person {
@JsonProperty
private String name;

@JsonProperty
private String email;

private Person() {
// Jackson deserialization

}

public Person(String name, String email) {
this.name = name;
this.email = email;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String getEmail() {
return email;

}

public void setEmail(String email) {
this.email = email;

}

// hashCode
// equals
// toString etc.

}

Fixtures

First, write out the exact JSON representation of a Person in the src/test/resources/fixtures directory
of your Dropwizard project as person.json:

{
"name": "Luther Blissett",
"email": "lb@example.com"

}

Testing Serialization

Next, write a test for serializing a Person instance to JSON:

import static io.dropwizard.testing.FixtureHelpers.*;
import static org.fest.assertions.api.Assertions.assertThat;
import io.dropwizard.jackson.Jackson;
import org.junit.Test;
import com.fasterxml.jackson.databind.ObjectMapper;

48 Chapter 2. User Manual

Dropwizard Documentation, Release 0.7.0

public class PersonTest {

private static final ObjectMapper MAPPER = Jackson.newObjectMapper();

@Test
public void serializesToJSON() throws Exception {

final Person person = new Person("Luther Blissett", "lb@example.com");
assertThat(MAPPER.writeValueAsString(person))

.isEqualTo(fixture("fixtures/person.json"));
}

}

This test uses FEST matchers and JUnit to test that when a Person instance is serialized via Jackson it matches the
JSON in the fixture file. (The comparison is done via a normalized JSON string representation, so whitespace doesn’t
affect the results.)

Testing Deserialization

Next, write a test for deserializing a Person instance from JSON:

import static io.dropwizard.testing.FixtureHelpers.*;
import static org.fest.assertions.api.Assertions.assertThat;
import io.dropwizard.jackson.Jackson;
import org.junit.Test;
import com.fasterxml.jackson.databind.ObjectMapper;

public class PersonTest {

private static final ObjectMapper MAPPER = Jackson.newObjectMapper();

@Test
public void deserializesFromJSON() throws Exception {

final Person person = new Person("Luther Blissett", "lb@example.com");
assertThat(MAPPER.readValue(fixture("fixtures/person.json"), Person.class))

.isEqualTo(person);
}

}

This test uses FEST matchers and JUnit to test that when a Person instance is deserialized via Jackson from the
specified JSON fixture it matches the given object.

2.9.2 Testing Resources

While many resource classes can be tested just by calling the methods on the class in a test, some resources lend them-
selves to a more full-stack approach. For these, use ResourceTestRule, which loads a given resource instance in
an in-memory Jersey server:

import static org.fest.assertions.api.Assertions.assertThat;
import static org.mockito.Mockito.*;

public class PersonResourceTest {

private static final PeopleStore dao = mock(PeopleStore.class);

@ClassRule

2.9. Testing Dropwizard 49

https://code.google.com/p/fest/
http://www.junit.org/
https://code.google.com/p/fest/
http://www.junit.org/

Dropwizard Documentation, Release 0.7.0

public static final ResourceTestRule resources = ResourceTestRule.builder()
.addResource(new PersonResource(dao))
.build();

private final Person person = new Person("blah", "blah@example.com");

@Before
public void setup() {

when(dao.fetchPerson(eq("blah"))).thenReturn(person);
// we have to reset the mock after each test because of the
// @ClassRule, or use a @Rule as mentioned below.
reset(dao);

}

@Test
public void testGetPerson() {

assertThat(resources.client().resource("/person/blah").get(Person.class))
.isEqualTo(person);

verify(dao).fetchPerson("blah");
}

}

Instansiate a ResourceTestRule using its Builder and add the various resource instances you want to test via
ResourceTestRule.Builder#addResource(Object). Use a @ClassRule annotation to have the rule
wrap the entire test class or the @Rule annotation to have the rule wrap each test individually (make sure to remove
static final modifier from resources).

In your tests, use #client(), which returns a Jersey Client instance to talk to and test your instances.

This doesn’t require opening a port, but ResourceTestRule tests will perform all the serialization, deserialization,
and validation that happens inside of the HTTP process.

This also doesn’t require a full integration test. In the above example, a mocked PeopleStore is passed to the
PersonResource instance to isolate it from the database. Not only does this make the test much faster, but it
allows your resource unit tests to test error conditions and edge cases much more easily.

Hint: You can trust PeopleStore works because you’ve got working unit tests for it, right?

Should you, at some point, grow tired of the near-infinite amount of debug logging produced by
ResourceTestRule you can use the java.util.logging API to silence the com.sun.jersey logger.

2.9.3 Integrated Testing

It can be useful to start up your entire app and hit it with real HTTP requests during testing. This can be achieved
by adding DropwizardAppRule to your JUnit test class, which will start the app prior to any tests running and
stop it again when they’ve completed (roughly equivalent to having used @BeforeClass and @AfterClass).
DropwizardAppRule also exposes the app’s Configuration, Environment and the app object itself so that
these can be queried by the tests.

public class LoginAcceptanceTest {

@ClassRule
public static final DropwizardAppRule<TestConfiguration> RULE =

new DropwizardAppRule<TestConfiguration>(MyApp.class, resourceFilePath("my-app-config.yaml"));

@Test

50 Chapter 2. User Manual

Dropwizard Documentation, Release 0.7.0

public void loginHandlerRedirectsAfterPost() {
Client client = new Client();

ClientResponse response = client.resource(
String.format("http://localhost:%d/login", RULE.getLocalPort()))
.post(ClientResponse.class, loginForm());

assertThat(response.getStatus()).isEqualTo(302);
}

}

2.10 Dropwizard Example, Step by Step

The dropwizard-example module provides you with a working example of a dropwizard app

• Open a terminal

• Make sure you have maven installed

• Make sure java home points at JDK 7

• Make sure you have curl

• mvn dependency:resolve

• mvn clean compile install

• mvn eclipse:eclipse -DdownloadSources=true

• From eclipse, File –> Import –> Existing Project into workspace

• java -jar ~/git/dropwizard/dropwizard-example/target/dropwizard-example-0.7.0-SNAPSHOT.jar db migrate
example.yml

• The above ran the liquibase migration in /src/main/resources/migrations.xml, creating the table schema

• You can now start the app in your IDE by running java -jar
~/git/dropwizard/dropwizard-example/target/dropwizard-example-0.7.0-SNAPSHOT.jar
db migrate example.yml

• Alternatively you can run this file in your IDE: com.example.helloworld.HelloWorldApplication
server example.yml

• Insert a new person: curl -H "Content-Type: application/json" -X
POST -d ’{"fullName":"Coda Hale", "jobTitle" : "Chief Wizard" }’
http://localhost:8080/people

• Retrieve that person: curl http://localhost:8080/people/1

• View the freemarker template: curl http://localhost:8080/people/1/view_freemarker

• View the mustache template: curl http://localhost:8080/people/1/view_mustache

2.10. Dropwizard Example, Step by Step 51

Dropwizard Documentation, Release 0.7.0

2.11 Dropwizard Configuration Reference

The dropwizard-configuration module provides you with a polymorphic configuration mechanism.

2.11.1 Servers

server:
type: default
maxThreads: 1024

52 Chapter 2. User Manual

Dropwizard Documentation, Release 0.7.0

All

Name Default Description
type default

• default
• simple

maxThreads 1024 The maximum number of threads to
use for requests.

minThreads 8 The minimum number of threads to
use for requests.

maxQueuedRequests 1024 The maximum number of requests to
queue before blocking the acceptors.

idleThreadTimeout 1 minute The amount of time a worker thread
can be idle before being stopped.

nofileSoftLimit (none) The number of open file descriptors
before a soft error is issued. Re-
quires Jetty’s libsetuid.so on
java.library.path.

nofileHardLimit (none) The number of open file descriptors
before a hard error is issued. Re-
quires Jetty’s libsetuid.so on
java.library.path.

gid (none) The group ID to switch to once
the connectors have started. Re-
quires Jetty’s libsetuid.so on
java.library.path.

uid (none) The user ID to switch to once
the connectors have started. Re-
quires Jetty’s libsetuid.so on
java.library.path.

user (none) The username to switch to once
the connectors have started. Re-
quires Jetty’s libsetuid.so on
java.library.path.

group (none) The group to switch to once the
connectors have started. Re-
quires Jetty’s libsetuid.so on
java.library.path.

umask (none) The umask to switch to once
the connectors have started. Re-
quires Jetty’s libsetuid.so on
java.library.path.

startsAsRoot (none) Whether or not the Dropwizard ap-
plication is started as a root user.
Requires Jetty’s libsetuid.so on
java.library.path.

shutdownGracePeriod 30 seconds The maximum time to wait for Jetty,
and all Managed instances, to cleanly
shutdown before forcibly terminating
them.

allowedMethods GET, POST, PUT, DELETE, HEAD,
OPTIONS, PATCH

The set of allowed HTTP methods.
Others will be rejected with a 405
Method Not Allowed response.

2.11. Dropwizard Configuration Reference 53

Dropwizard Documentation, Release 0.7.0

GZip

server:
gzip:
bufferSize: 8KiB

Name De-
fault

Description

enabled true If true, all requests with gzip in their Accept-Content-Encoding headers will have
their response entities encoded with gzip.

minimumEnti-
tySize

256
bytes

All response entities under this size are not compressed.

bufferSize 8KiB The size of the buffer to use when compressing.
excludedUserA-
gents

[] The set of user agents to exclude from compression.

compressed-
MimeTypes

[] If specified, the set of mime types to compress.

Request Log

server:
requestLog:
timeZone: UTC

Name Default Description
time-
Zone

UTC The time zone to which request timestamps will be converted.

appen-
ders

console
appender

The set of AppenderFactory appenders to which requests will be logged. TODO See
logging/appender refs for more info

Simple

Extends the attributes that are available to all servers

server:
type: simple
applicationContextPath: /application
adminContextPath: /admin
connector:
type: http
port: 8080

Name De-
fault

Description

connector http
con-
nector

HttpConnectorFactory HTTP connector listening on port 8080. The ConnectorFactory
connector which will handle both application and admin requests. TODO link to
connector below.

application-
Con-
textPath

/appli-
cation

The context path of the application servlets, including Jersey.

adminCon-
textPath

/admin The context path of the admin servlets, including metrics and tasks.

54 Chapter 2. User Manual

Dropwizard Documentation, Release 0.7.0

Default

Extends the attributes that are available to all servers

server:
adminMinThreads: 1
adminMaxThreads: 64
applicationConnectors:
- type: http

port: 8080
- type: https

port: 8443
keyStorePath: example.keystore
keyStorePassword: example
validateCerts: false

adminConnectors:
- type: http

port: 8081
- type: https

port: 8444
keyStorePath: example.keystore
keyStorePassword: example
validateCerts: false

Name Default Description
application-
Connectors

An HTTP connector
listening on port 8080.

A set of connectors which will handle application requests.

adminConnec-
tors

An HTTP connector
listening on port 8081.

An HTTP connector listening on port 8081. A set of connectors
which will handle admin requests.

admin-
MinThreads

1 The minimum number of threads to use for admin requests.

adminMax-
Threads

64 The maximum number of threads to use for admin requests.

2.11.2 Connectors

HTTP

Extending from the default server configuration
server:

applicationConnectors:
- type: http

port: 8080
bindHost: 127.0.0.1 # only bind to loopback
headerCacheSize: 512 bytes
outputBufferSize: 32KiB
maxRequestHeaderSize: 8KiB
maxResponseHeaderSize: 8KiB
inputBufferSize: 8KiB
idleTimeout: 30 seconds
minBufferPoolSize: 64 bytes
bufferPoolIncrement: 1KiB
maxBufferPoolSize: 64KiB
acceptorThreads: 1
selectorThreads: 2
acceptQueueSize: 1024

2.11. Dropwizard Configuration Reference 55

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-jetty/src/main/java/io/dropwizard/jetty/HttpConnectorFactory.java

Dropwizard Documentation, Release 0.7.0

reuseAddress: true
soLingerTime: 345s
useServerHeader: false
useDateHeader: true
useForwardedHeaders: true

56 Chapter 2. User Manual

Dropwizard Documentation, Release 0.7.0

Name De-
fault

Description

port 8080 The TCP/IP port on which to listen for incoming connections.
bindHost (none) The hostname to bind to.
header-
CacheSize

512
bytes

The size of the header field cache.

output-
BufferSize

32KiB The size of the buffer into which response content is aggregated before being sent to the
client. A larger buffer can improve performance by allowing a content producer to run
without blocking, however larger buffers consume more memory and may induce some
latency before a client starts processing the content.

maxRequest-
HeaderSize

8KiB The maximum size of a request header. Larger headers will allow for more and/or larger
cookies plus larger form content encoded in a URL. However, larger headers consume
more memory and can make a server more vulnerable to denial of service attacks.

maxRespon-
seHeader-
Size

8KiB The maximum size of a response header. Larger headers will allow for more and/or
larger cookies and longer HTTP headers (eg for redirection). However, larger headers
will also consume more memory.

inputBuffer-
Size

8KiB The size of the per-connection input buffer.

idleTimeout 30
sec-
onds

The maximum idle time for a connection, which roughly translates to the
java.net.Socket#setSoTimeout(int) call, although with NIO implementations other
mechanisms may be used to implement the timeout. The max idle time is applied when
waiting for a new message to be received on a connection or when waiting for a new
message to be sent on a connection. This value is interpreted as the maximum time
between some progress being made on the connection. So if a single byte is read or
written, then the timeout is reset.

minBuffer-
PoolSize

64
bytes

The minimum size of the buffer pool.

buffer-
PoolIncre-
ment

1KiB The increment by which the buffer pool should be increased.

maxBuffer-
PoolSize

64KiB The maximum size of the buffer pool.

accep-
torThreads

of
CPUs/2

The number of worker threads dedicated to accepting connections.

selec-
torThreads

of
CPUs

The number of worker threads dedicated to sending and receiving data.

accep-
tQueueSize

(OS
de-
fault)

The size of the TCP/IP accept queue for the listening socket.

reuseAd-
dress

true Whether or not SO_REUSEADDR is enabled on the listening socket.

soLinger-
Time

(dis-
abled)

Enable/disable SO_LINGER with the specified linger time.

useServer-
Header

false Whether or not to add the Server header to each response.

useDate-
Header

true Whether or not to add the Date header to each response.

useForward-
edHeaders

true Whether or not to look at X-Forwarded-* headers added by proxies. See
ForwardedRequestCustomize for details.

HTTPS

Extends the attributes that are available to the HTTP connector

2.11. Dropwizard Configuration Reference 57

http://docs.oracle.com/javase/7/docs/api/java/net/Socket.html#setSoTimeout(int)

Dropwizard Documentation, Release 0.7.0

Extending from the default server configuration
server:

applicationConnectors:
- type: https

port: 8443
....
keyStorePath: /path/to/file
keyStorePassword: changeit
keyStoreType: JKS
keyStoreProvider:
trustStorePath: /path/to/file
trustStorePassword: changeit
trustStoreType: JKS
trustStoreProvider:
keyManagerPassword: changeit
needClientAuth: false
wantClientAuth:
certAlias: <alias>
crlPath: /path/to/file
enableCRLDP: false
enableOCSP: false
maxCertPathLength: (unlimited)
ocspResponderUrl: (none)
jceProvider: (none)
validateCerts: true
validatePeers: true
supportedProtocols: SSLv3
supportedCipherSuites: TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
allowRenegotiation: true
endpointIdentificationAlgorithm: (none)

58 Chapter 2. User Manual

Dropwizard Documentation, Release 0.7.0

Name De-
fault

Description

keyStorePath RE-
QUIRED

The path to the Java key store which contains the host certificate and private key.

keyStorePass-
word

RE-
QUIRED

The password used to access the key store.

keyStoreType JKS The type of key store (usually JKS, PKCS12, JCEKS‘‘, Windows-MY}, or
Windows-ROOT).

keyStore-
Provider

(none) The JCE provider to use to access the key store.

trustStorePath (none) The path to the Java key store which contains the CA certificates used to establish
trust.

trustStorePass-
word

(none) The password used to access the trust store.

trustStoreType JKS The type of trust store (usually JKS, PKCS12, JCEKS, Windows-MY, or
Windows-ROOT).

trustStore-
Provider

(none) The JCE provider to use to access the trust store.

keyManager-
Password

(none) The password, if any, for the key manager.

needClientAuth (none) Whether or not client authentication is required.
wantClientAuth (none) Whether or not client authentication is requested.
certAlias (none) The alias of the certificate to use.
crlPath (none) The path to the file which contains the Certificate Revocation List.
enableCRLDP false Whether or not CRL Distribution Points (CRLDP) support is enabled.
enableOCSP false Whether or not On-Line Certificate Status Protocol (OCSP) support is enabled.
maxCertPath-
Length

(un-
lim-
ited)

The maximum certification path length.

ocspRespon-
derUrl

(none) The location of the OCSP responder.

jceProvider (none) The name of the JCE provider to use for cryptographic support.
validateCerts true Whether or not to validate TLS certificates before starting. If enabled, Dropwizard

will refuse to start with expired or otherwise invalid certificates.
validatePeers true Whether or not to validate TLS peer certificates.
supportedProto-
cols

(none) A list of protocols (e.g., SSLv3, TLSv1) which are supported. All other protocols
will be refused.

supportedCi-
pherSuites

(none) A list of cipher suites (e.g.,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256) which are supported. All
other cipher suites will be refused

excludedCi-
pherSuites

(none) A list of cipher suites (e.g.,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256) which are excluded.
These cipher suites will be refused and exclusion takes higher precedence than
inclusion, such that if a cipher suite is listed in supportedCipherSuites and
excludedCipherSuitse, the cipher suite will be excluded. To verify that the
proper cipher suites are being whitelisted and blacklisted, it is recommended to use
the tool sslyze.

allowRenegoti-
ation

true Whether or not TLS renegotiation is allowed.

endpointIdenti-
ficationAlgo-
rithm

(none) Which endpoint identification algorithm, if any, to use during the TLS handshake.

2.11. Dropwizard Configuration Reference 59

https://github.com/iSECPartners/sslyze

Dropwizard Documentation, Release 0.7.0

SPDY

Extends the attributes that are available to the HTTPS connector

server:
applicationConnectors:
- type: spdy3

port: 8445
keyStorePath: example.keystore
keyStorePassword: example
validateCerts: false

Name Default Description
pushStrategy (none) The push strategy to use for server-initiated SPDY pushes.

2.11.3 Logging

logging:
level: INFO
loggers:
io.dropwizard: INFO

appenders:
- type: console

Name Default Description
level Level.INFO Logback logging level
loggers (none)
appenders (none) one of console, file or syslog

Console

logging:
level: INFO
appenders:
- type: console

threshold: ALL
timeZone: UTC
target: stdout
logFormat: # TODO

Name Default Description
type RE-

QUIRED
The appender type. Must be console.

thresh-
old

ALL The lowest level of events to print to the console.

time-
Zone

UTC The time zone to which event timestamps will be converted.

target stdout The name of the standard stream to which events will be written. Can be stdout or
stderr.

logFor-
mat

default The Logback pattern with which events will be formatted. See the Logback
documentation for details.

60 Chapter 2. User Manual

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-spdy/src/main/java/io/dropwizard/spdy/PushStrategyFactory.java
http://logback.qos.ch/manual/layouts.html#conversionWord

Dropwizard Documentation, Release 0.7.0

File

logging:
level: INFO
appenders:
- type: file

currentLogFilename: /var/log/myapplication.log
threshold: ALL
archive: true
archivedLogFilenamePattern: /var/log/myapplication-%d.log
archivedFileCount: 5
timeZone: UTC
logFormat: # TODO

Name De-
fault

Description

type RE-
QUIRED

The appender type. Must be file.

currentLog-
Filename

RE-
QUIRED

The filename where current events are logged.

threshold ALL The lowest level of events to write to the file.
archive true Whether or not to archive old events in separate files.
archivedLog-
FilenamePat-
tern

(none) Required if archive is true. The filename pattern for archived files. %d is replaced
with the date in yyyy-MM-dd form, and the fact that it ends with .gz indicates the
file will be gzipped as it’s archived. Likewise, filename patterns which end in .zip
will be filled as they are archived.

archivedFile-
Count

5 The number of archived files to keep. Must be between 1 and 50.

timeZone UTC The time zone to which event timestamps will be converted.
logFormat de-

fault
The Logback pattern with which events will be formatted. See the Logback
documentation for details.

Syslog

logging:
level: INFO
appenders:
- type: syslog

host: localhost
port: 514
facility: local0
threshold: ALL
stackTracePrefix: \t
logFormat: # TODO

2.11. Dropwizard Configuration Reference 61

http://logback.qos.ch/manual/layouts.html#conversionWord

Dropwizard Documentation, Release 0.7.0

Name De-
fault

Description

host lo-
cal-
host

The hostname of the syslog server.

port 514 The port on which the syslog server is listening.
facility lo-

cal0
The syslog facility to use. Can be either auth, authpriv, daemon, cron, ftp, lpr,
kern, mail, news, syslog, user, uucp, local0, local1, local2, local3,
local4, local5, local6, or local7.

thresh-
old

ALL The lowest level of events to write to the file.

logFor-
mat

de-
fault

The Logback pattern with which events will be formatted. See the Logback documentation
for details.

stack-
Tra-
cePrefix

t The prefix to use when writing stack trace lines (these are sent to the syslog server separately
from the main message)

2.11.4 Metrics

The metrics configuration has two fields; frequency and reporters.

metrics:
frequency: 1 second
reporters:
- type: <type>

Name Default Description
frequency 1 second The frequency to report metrics. Overridable per-reporter.
reporters (none) A list of reporters to report metrics.

All Reporters

The following options are available for all metrics reporters.

metrics:
reporters:
- type: <type>

durationUnit: milliseconds
rateUnit: seconds
excludes: (none)
includes: (all)
frequency: 1 second

Name Default Description
duratio-
nUnit

millisec-
onds

The unit to report durations as. Overrides per-metric duration units.

rateUnit seconds The unit to report rates as. Overrides per-metric rate units.
excludes (none) Metrics to exclude from reports, by name. When defined, matching metrics will not

be reported.
includes (all) Metrics to include in reports, by name. When defined, only these metrics will be

reported.
frequency (none) The frequency to report metrics. Overrides the default.

62 Chapter 2. User Manual

http://logback.qos.ch/manual/layouts.html#conversionWord

Dropwizard Documentation, Release 0.7.0

Formatted Reporters

These options are available only to “formatted” reporters and extend the options available to all reporters

metrics:
reporters:
- type: <type>

locale: <system default>

Name Default Description
locale System default The Locale for formatting numbers, dates and times.

Console Reporter

Reports metrics periodically to the console.

Extends the attributes that are available to formatted reporters

metrics:
reporters:
- type: console

timeZone: UTC
output: stdout

Name Default Description
timeZone UTC The timezone to display dates/times for.
output stdout The stream to write to. One of stdout or stderr.

CSV Reporter

Reports metrics periodically to a CSV file.

Extends the attributes that are available to formatted reporters

metrics:
reporters:
- type: csv

file: /path/to/file

Name Default Description
file No default The CSV file to write metrics to.

Ganglia Reporter

Reports metrics periodically to Ganglia.

Extends the attributes that are available to all reporters

metrics:
reporters:
- type: ganglia

host: localhost
port: 8649
mode: unicast
ttl: 1
uuid: (none)
spoof: localhost:8649

2.11. Dropwizard Configuration Reference 63

http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html

Dropwizard Documentation, Release 0.7.0

tmax: 60
dmax: 0

Name De-
fault

Description

host local-
host

The hostname (or group) of the Ganglia server(s) to report to.

port 8649 The port of the Ganglia server(s) to report to.
mode unicast The UDP addressing mode to announce the metrics with. One of unicast or multicast.
ttl 1 The time-to-live of the UDP packets for the announced metrics.
uuid (none) The UUID to tag announced metrics with.
spoof (none) The hostname and port to use instead of this nodes for the announced metrics. In the format

hostname:port.
tmax 60 The tmax value to annouce metrics with.
dmax 0 The dmax value to announce metrics with.

Graphite Reporter

Reports metrics periodically to Graphite.

Extends the attributes that are available to all reporters

metrics:
reporters:
- type: graphite

host: localhost
port: 8080
prefix: <prefix>

Name Default Description
host localhost The hostname of the Graphite server to report to.
port 8080 The port of the Graphite server to report to.
prefix (none) The prefix for Metric key names to report to Graphite.

SLF4J

Reports metrics periodically by logging via SLF4J.

Extends the attributes that are available to all reporters

See BaseReporterFactory and BaseFormattedReporterFactory for more options.

metrics:
reporters:
- type: log

logger: metrics
markerName: <marker name>

Name Default Description
logger metrics The name of the logger to write metrics to.
markerName (none) The name of the marker to mark logged metrics with.

64 Chapter 2. User Manual

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-metrics/src/main/java/io/dropwizard/metrics/BaseReporterFactory.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-metrics/src/main/java/io/dropwizard/metrics/BaseFormattedReporterFactory.java

Dropwizard Documentation, Release 0.7.0

2.11.5 Clients

HttpClient

See HttpClientConfiguration for more options.

httpClient:
timeout: 500ms
connectionTimeout: 500ms
timeToLive: 1h
cookiesEnabled: false
maxConnections: 1024
maxConnectionsPerRoute: 1024
keepAlive: 0ms
retries: 0
userAgent: <application name> (<client name>)

Name Default Description
timeout 500 milliseconds The maximum idle time for a connection, once established.
connection-
Timeout

500 milliseconds The maximum time to wait for a connection to open.

timeToLive 1 hour The maximum time a pooled connection can stay idle (not leased to any
thread) before it is shut down.

cookiesEn-
abled

false Whether or not to enable cookies.

maxCon-
nections

1024 The maximum number of concurrent open connections.

maxCon-
nection-
sPerRoute

1024 The maximum number of concurrent open connections per route.

keepAlive 0 milliseconds The maximum time a connection will be kept alive before it is reconnected. If
set to 0, connections will be immediately closed after every request/response.

retries 0 The number of times to retry failed requests. Requests are only retried if they
throw an exception other than InterruptedIOException,
UnknownHostException, ConnectException, or SSLException.

userAgent applicationName
(clientName)

The User-Agent to send with requests.

JerseyClient

Extends the attributes that are available to http clients

See JerseyClientConfiguration and HttpClientConfiguration for more options.

jerseyClient:
minThreads: 1
maxThreads: 128
gzipEnabled: true
gzipEnabledForRequests: true

2.11. Dropwizard Configuration Reference 65

https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/HttpClientConfiguration.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/JerseyClientConfiguration.java
https://github.com/dropwizard/dropwizard/blob/master/dropwizard-client/src/main/java/io/dropwizard/client/HttpClientConfiguration.java

Dropwizard Documentation, Release 0.7.0

Name De-
fault

Description

minThreads 1 The minimum number of threads in the pool used for asynchronous requests.
maxThreads 128 The maximum number of threads in the pool used for asynchronous requests.
gzipEnabled true Adds an Accept-Encoding: gzip header to all requests, and enables automatic

gzip decoding of responses.
gzipEnabledFor-
Requests

true Adds a Content-Encoding: gzip header to all requests, and enables automatic gzip
encoding of requests.

66 Chapter 2. User Manual

CHAPTER 3

About Dropwizard

3.1 Contributors

Many, many thanks to:

• Adam Jordens

• Adam Marcus

• Alex Heneveld

• Anders Hedström

• Andrei Savu

• Andrew Clay Shafer.

• Armando Singer

• Arun Horne

• Brandon Beck

• Brian McCallister

• Brian O’Neill

• Bruce Ritchie

• Cagatay Kavukcuoglu

• Cameron Fieber

• Cemalettin Koc

• Chris Gray

• Chris Tierney

• Christopher Currie

• Christopher Elkins

• Collin VanDyck

• Dale Wijnand

• Dan Everton

• David Morgantini

67

https://github.com/ajordens
https://github.com/marcua
https://github.com/ahgittin
https://github.com/andershedstrom
https://github.com/andreisavu
https://github.com/littleidea
https://github.com/asinger
https://github.com/arunh
https://github.com/bbeck
https://github.com/brianm
https://github.com/boneill42
https://github.com/Omega359
https://github.com/tinkerware
https://github.com/cfieber
https://github.com/Cemo
https://github.com/chrisgray
https://github.com/christierney
https://github.com/christophercurrie
https://github.com/celkins
https://github.com/collinvandyck
https://github.com/dwijnand
https://github.com/deverton
https://github.com/dmorgantini

Dropwizard Documentation, Release 0.7.0

• David Stendardi

• Derek Stainer

• Eric Tschetter

• Fredrik Sundberg

• Hal Hildebrand

• Ian Eure

• James Ward

• Jared Stehler

• Jochen Schalanda

• Joshua Spiewak

• Justin Rudd

• Mark Wolfe

• Michael Fairley

• Mårten Gustafson

• Nick Telford

• Ori Schwartz

• Sam Perman

• Sam Quigley

• Scott Askew

• Sebastian Hartte

• Tatu Saloranta

• Ted Nyman

• Tom Crayford

• Tom Morris

• Vidit Drolia

• Xavier Shay

3.2 Frequently Asked Questions

What’s a Dropwizard? A character in a K.C. Green web comic.

How is Dropwizard licensed? It’s licensed under the Apache License v2.

How can I commit to Dropwizard? Go to the GitHub project, fork it, and submit a pull request. We prefer small,
single-purpose pull requests over large, multi-purpose ones. We reserve the right to turn down any proposed
changes, but in general we’re delighted when people want to make our projects better!

68 Chapter 3. About Dropwizard

https://github.com/dstendardi
https://github.com/dstainer
https://github.com/metamx
https://github.com/KingBuzzer
https://github.com/Hellblazer
https://github.com/ieure
https://github.com/jamesward
https://github.com/cengageng
https://github.com/joschi
https://github.com/jspiewak
https://github.com/seagecko
https://github.com/wolfeidau
https://github.com/michaelfairley
https://github.com/chids
https://github.com/nicktelford
https://github.com/fleaflicker
https://github.com/samperman
https://github.com/emerose
https://github.com/scottfromsf
https://github.com/shartte
https://github.com/cowtowncoder
https://github.com/tnm
https://github.com/tcrayford
https://github.com/tommorris
https://github.com/vdrolia
https://github.com/xaviershay
http://gunshowcomic.com/316
http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/dropwizard/dropwizard

Dropwizard Documentation, Release 0.7.0

3.3 Release Notes

3.3.1 v0.7.1

• Added instrumentation to Task, using metrics annotations.

• Added ability to blacklist SSL cipher suites.

• Added @PATCH annotation for Jersey resource methods to indicate use of the HTTP PATCH method.

• Added support for configurble request retry behavior for HttpClientBuilder and
JerseyClientBuilder.

• Added facility to get the admin HTTP port in DropwizardAppTestRule.

• Added ScanningHibernateBundle, which scans packages for entities, instead of requiring you to add
them individually.

• Added facility to invalidate credentials from the CachingAuthenticator that match a specified
Predicate.

• Added a CI build profile for JDK 8 to ensure that Dropwizard builds against the latest version of the JDK.

• Added --catalog and --schema options to Liquibase.

• Added stackTracePrefix configuration option to SyslogAppenderFactory to configure the pattern
prepended to each line in the stack-trace sent to syslog. Defaults to the TAB character, “t”. Note: this is different
from the bang prepended to text logs (such as “console”, and “file”), as syslog has different conventions for
multi-line messages.

• Added ability to validate Optional values using validation annotations. Such values require the
@UnwrapValidatedValue annotation, in addition to the validations you wish to use.

• Added facility to configure the User-Agent for HttpClient. Configurable via the userAgent configu-
ration option.

• Added configurable AllowedMethodsFilter. Configure allowed HTTP methods for both the application
and admin connnectors with allowedMethods.

• Added support for specifying a CredentialProvider for HTTP clients.

• Fixed silently overriding Servlets or ServletFilters; registering a duplicate will now emit a warning.

• Fixed SyslogAppenderFactory failing when the application name contains a PCRE reserved character
(e.g. / or $).

• Fixed regression causing JMX reporting of metrics to not be enabled by default.

• Fixed transitive dependencies on log4j and extraneous sl4j backends bleeding in to projects. Dropwizard will
now enforce that only Logback and slf4j-logback are used everywhere.

• Fixed clients disconnecting before the request has been fully received causing a “500 Internal Server Error”
to be generated for the request log. Such situations will now correctly generate a “400 Bad Request”, as the
request is malformed. Clients will never see these responses, but they matter for logging and metrics that were
previously considering this situation as a server error.

• Fixed DiscoverableSubtypeResolver using the system ClassLoader, instead of the local one.

• Fixed regression causing Liquibase --dump to fail to dump the database.

• Fixed the CSV metrics reporter failing when the output directory doesn’t exist. It will now attempt to create the
directory on startup.

3.3. Release Notes 69

Dropwizard Documentation, Release 0.7.0

• Fixed global frequency for metrics reporters being permenantly overridden by the default frequency for individ-
ual reporters.

• Fixed tests failing on Windows due to platform-specific line separators.

• Changed DropwizardAppTestRule so that it no longer requires a configuration path to operate. When no
path is specified, it will now use the applications’ default configuration.

• Changed Bootstrap so that getMetricsFactory()may now be overridden to provide a custom instance
to the framework to use.

• Upgraded to Guava 17.0 Note: this addresses a bug with BloomFilters that is incompatible with pre-17.0 Bloom-
Filters.

• Upgraded to Jackson 2.3.3

• Upgraded to Apache HttpClient 4.3.4

• Upgraded to Metrics 3.0.2

• Upgraded to Logback 1.1.2

• Upgraded to h2 1.4.178

• Upgraded to jDBI 2.55

• Upgraded to Hibernate 5.3.5 Final

• Upgraded to Hibernate Validator 5.1.1 Final

• Upgraded to Mustache 0.8.15

3.3.2 v0.7.0: Apr 04 2014

• Upgraded to Java 7.

• Moved to the io.dropwizard group ID and namespace.

• Extracted out a number of reusable libraries: dropwizard-configuration, dropwizard-jackson,
dropwizard-jersey, dropwizard-jetty, dropwizard-lifecycle, dropwizard-logging,
dropwizard-servlets, dropwizard-util, dropwizard-validation.

• Extracted out various elements of Environment to separate classes: JerseyEnvironment,
LifecycleEnvironment, etc.

• Extracted out dropwizard-views-freemarker and dropwizard-views-mustache.
dropwizard-views just provides infrastructure now.

• Renamed Service to Application.

• Added dropwizard-forms, which provides support for multipart MIME entities.

• Added dropwizard-spdy.

• Added AppenderFactory, allowing for arbitrary logging appenders for application and request logs.

• Added ConnectorFactory, allowing for arbitrary Jetty connectors.

• Added ServerFactory, with multi- and single-connector implementations.

• Added ReporterFactory, for metrics reporters, with Graphite and Ganglia implementations.

• Added ConfigurationSourceProvider to allow loading configuration files from sources other than the
filesystem.

70 Chapter 3. About Dropwizard

Dropwizard Documentation, Release 0.7.0

• Added setuid support. Configure the user/group to run as and soft/hard open file limits in the ServerFactory.
To bind to privileged ports (e.g. 80), enable startAsRoot and set user and group, then start your applica-
tion as the root user.

• Added builders for managed executors.

• Added a default check command, which loads and validates the service configuration.

• Added support for the Jersey HTTP client to dropwizard-client.

• Added Jackson Afterburner support.

• Added support for deflate-encoded requests and responses.

• Added support for HTTP Sessions. Add the annotated parameter to your resource method: @Session
HttpSession session to have the session context injected.

• Added support for a “flash” message to be propagated across requests. Add the annotated parameter to your
resource method: @Session Flash message to have any existing flash message injected.

• Added support for deserializing Java enums with fuzzy matching rules (i.e., whitespace stripping, -/_ equiva-
lence, case insensitivity, etc.).

• Added HibernateBundle#configure(Configuration) for customization of Hibernate configura-
tion.

• Added support for Joda Time DateTime arguments and results when using JDBI.

• Added configuration option to include Exception stack-traces when logging to syslog. Stack traces are now
excluded by default.

• Added the application name and PID (if detectable) to the beginning of syslog messages, as is the convention.

• Added --migrations-file command-line option to migrate command to supply the migrations file
explicitly.

• Validation errors are now returned as application/json responses.

• Simplified AsyncRequestLog; now standardized on Jetty 9 NCSA format.

• Renamed DatabaseConfiguration to DataSourceFactory, and ConfigurationStrategy to
DatabaseConfiguration.

• Changed logging to be asynchronous. Messages are now buffered and batched in-memory before being delivered
to the configured appender(s).

• Changed handling of runtime configuration errors. Will no longer display an Exception stack-trace and will
present a more useful description of the problem, including suggestions when appropriate.

• Changed error handling to depend more heavily on Jersey exception mapping.

• Changed dropwizard-db to use tomcat-jdbc instead of tomcat-dbcp.

• Changed default formatting when logging nested Exceptions to display the root-cause first.

• Replaced ResourceTest with ResourceTestRule, a JUnit TestRule.

• Dropped Scala support.

• Dropped ManagedSessionFactory.

• Dropped ObjectMapperFactory; use ObjectMapper instead.

• Dropped Validator; use javax.validation.Validator instead.

• Fixed a shutdown bug in dropwizard-migrations.

• Fixed formatting of “Caused by” lines not being prefixed when logging nested Exceptions.

3.3. Release Notes 71

Dropwizard Documentation, Release 0.7.0

• Fixed not all available Jersey endpoints were being logged at startup.

• Upgraded to argparse4j 0.4.3.

• Upgraded to Guava 16.0.1.

• Upgraded to Hibernate Validator 5.0.2.

• Upgraded to Jackson 2.3.1.

• Upgraded to JDBI 2.53.

• Upgraded to Jetty 9.0.7.

• Upgraded to Liquibase 3.1.1.

• Upgraded to Logback 1.1.1.

• Upgraded to Metrics 3.0.1.

• Upgraded to Mustache 0.8.14.

• Upgraded to SLF4J 1.7.6.

• Upgraded to Jersey 1.18.

• Upgraded to Apache HttpClient 4.3.2.

• Upgraded to tomcat-jdbc 7.0.50.

• Upgraded to Hibernate 4.3.1.Final.

3.3.3 v0.6.2: Mar 18 2013

• Added support for non-UTF8 views.

• Fixed an NPE for services in the root package.

• Fixed exception handling in TaskServlet.

• Upgraded to Slf4j 1.7.4.

• Upgraded to Jetty 8.1.10.

• Upgraded to Jersey 1.17.1.

• Upgraded to Jackson 2.1.4.

• Upgraded to Logback 1.0.10.

• Upgraded to Hibernate 4.1.9.

• Upgraded to Hibernate Validator 4.3.1.

• Upgraded to tomcat-dbcp 7.0.37.

• Upgraded to Mustache.java 0.8.10.

• Upgraded to Apache HttpClient 4.2.3.

• Upgraded to Jackson 2.1.3.

• Upgraded to argparse4j 0.4.0.

• Upgraded to Guava 14.0.1.

• Upgraded to Joda Time 2.2.

• Added retries to HttpClientConfiguration.

72 Chapter 3. About Dropwizard

Dropwizard Documentation, Release 0.7.0

• Fixed log formatting for extended stack traces, also now using extended stack traces as the default.

• Upgraded to FEST Assert 2.0M10.

3.3.4 v0.6.1: Nov 28 2012

• Fixed incorrect latencies in request logs on Linux.

• Added ability to register multiple ServerLifecycleListener instances.

3.3.5 v0.6.0: Nov 26 2012

• Added Hibernate support in dropwizard-hibernate.

• Added Liquibase migrations in dropwizard-migrations.

• Renamed http.acceptorThreadCount to http.acceptorThreads.

• Renamed ssl.keyStorePath to ssl.keyStore.

• Dropped JerseyClient. Use Jersey’s Client class instead.

• Moved JDBI support to dropwizard-jdbi.

• Dropped Database. Use JDBI’s DBI class instead.

• Dropped the Json class. Use ObjectMapperFactory and ObjectMapper instead.

• Decoupled JDBI support from tomcat-dbcp.

• Added group support to Validator.

• Moved CLI support to argparse4j.

• Fixed testing support for Optional resource method parameters.

• Fixed Freemarker support to use its internal encoding map.

• Added property support to ResourceTest.

• Fixed JDBI metrics support for raw SQL queries.

• Dropped Hamcrest matchers in favor of FEST assertions in dropwizard-testing.

• Split Environment into Bootstrap and Environment, and broke configuration of each into Service‘s
#initialize(Bootstrap) and #run(Configuration, Environment).

• Combined AbstractService and Service.

• Trimmed down ScalaService, so be sure to add ScalaBundle.

• Added support for using JerseyClientFactory without an Environment.

• Dropped Jerkson in favor of Jackson’s Scala module.

• Added Optional support for JDBI.

• Fixed bug in stopping AsyncRequestLog.

• Added UUIDParam.

• Upgraded to Metrics 2.2.0.

• Upgraded to Jetty 8.1.8.

• Upgraded to Mockito 1.9.5.

3.3. Release Notes 73

Dropwizard Documentation, Release 0.7.0

• Upgraded to tomcat-dbcp 7.0.33.

• Upgraded to Mustache 0.8.8.

• Upgraded to Jersey 1.15.

• Upgraded to Apache HttpClient 4.2.2.

• Upgraded to JDBI 2.41.

• Upgraded to Logback 1.0.7 and SLF4J 1.7.2.

• Upgraded to Guava 13.0.1.

• Upgraded to Jackson 2.1.1.

• Added support for Joda Time.

Note: Upgrading to 0.6.0 will require changing your code. First, your Service subclass will need to implement both
#initialize(Bootstrap<T>) and #run(T, Environment). What used to be in initialize should
be moved to run. Second, your representation classes need to be migrated to Jackson 2. For the most part, this
is just changing imports to com.fasterxml.jackson.annotation.*, but there are some subtler changes in
functionality. Finally, references to 0.5.x’s Json, JerseyClient, or JDBI classes should be changed to Jackon’s
ObjectMapper, Jersey’s Client, and JDBI’s DBI respectively.

3.3.6 v0.5.1: Aug 06 2012

• Fixed logging of managed objects.

• Fixed default file logging configuration.

• Added FEST-Assert as a dropwizard-testing dependency.

• Added support for Mustache templates (*.mustache) to dropwizard-views.

• Added support for arbitrary view renderers.

• Fixed command-line overrides when no configuration file is present.

• Added support for arbitrary DnsResolver implementations in HttpClientFactory.

• Upgraded to Guava 13.0 final.

• Fixed task path bugs.

• Upgraded to Metrics 2.1.3.

• Added JerseyClientConfiguration#compressRequestEntity for disabling the compression of
request entities.

• Added Environment#scanPackagesForResourcesAndProviders for automatically detecting Jer-
sey providers and resources.

• Added Environment#setSessionHandler.

3.3.7 v0.5.0: Jul 30 2012

• Upgraded to JDBI 2.38.1.

• Upgraded to Jackson 1.9.9.

• Upgraded to Jersey 1.13.

74 Chapter 3. About Dropwizard

http://wiki.fasterxml.com/JacksonUpgradeFrom19To20
http://wiki.fasterxml.com/JacksonUpgradeFrom19To20

Dropwizard Documentation, Release 0.7.0

• Upgraded to Guava 13.0-rc2.

• Upgraded to HttpClient 4.2.1.

• Upgraded to tomcat-dbcp 7.0.29.

• Upgraded to Jetty 8.1.5.

• Improved AssetServlet:

– More accurate Last-Modified-At timestamps.

– More general asset specification.

– Default filename is now configurable.

• Improved JacksonMessageBodyProvider:

– Now based on Jackson’s JAX-RS support.

– Doesn’t read or write types annotated with @JsonIgnoreType.

• Added @MinSize, @MaxSize, and @SizeRange validations.

• Added @MinDuration, @MaxDuration, and @DurationRange validations.

• Fixed race conditions in Logback initialization routines.

• Fixed TaskServlet problems with custom context paths.

• Added jersey-text-framework-core as an explicit dependency of dropwizard-testing. This
helps out some non-Maven build frameworks with bugs in dependency processing.

• Added addProvider to JerseyClientFactory.

• Fixed NullPointerException problems with anonymous health check classes.

• Added support for serializing/deserializing ByteBuffer instances as JSON.

• Added supportedProtocols to SSL configuration, and disabled SSLv2 by default.

• Added support for Optional<Integer> query parameters and others.

• Removed jersey-freemarker dependency from dropwizard-views.

• Fixed missing thread contexts in logging statements.

• Made the configuration file argument for the server command optional.

• Added support for disabling log rotation.

• Added support for arbitrary KeyStore types.

• Added Log.forThisClass().

• Made explicit service names optional.

3.3.8 v0.4.4: Jul 24 2012

• Added support for @JsonIgnoreType to JacksonMessageBodyProvider.

3.3.9 v0.4.3: Jun 22 2012

• Re-enable immediate flushing for file and console logging appenders.

3.3. Release Notes 75

Dropwizard Documentation, Release 0.7.0

3.3.10 v0.4.2: Jun 20 2012

• Fixed JsonProcessingExceptionMapper. Now returns human-readable error messages for malformed
or invalid JSON as a 400 Bad Request. Also handles problems with JSON generation and object mapping
in a developer-friendly way.

3.3.11 v0.4.1: Jun 19 2012

• Fixed type parameter resolution in for subclasses of subclasses of ConfiguredCommand.

• Upgraded to Jackson 1.9.7.

• Upgraded to Logback 1.0.6, with asynchronous logging.

• Upgraded to Hibernate Validator 4.3.0.

• Upgraded to JDBI 2.34.

• Upgraded to Jetty 8.1.4.

• Added logging.console.format, logging.file.format, and logging.syslog.format pa-
rameters for custom log formats.

• Extended ResourceTest to allow for enabling/disabling specific Jersey features.

• Made Configuration serializable as JSON.

• Stopped lumping command-line options in a group in Command.

• Fixed java.util.logging level changes.

• Upgraded to Apache HttpClient 4.2.

• Improved performance of AssetServlet.

• Added withBundle to ScalaService to enable bundle mix-ins.

• Upgraded to SLF4J 1.6.6.

• Enabled configuration-parameterized Jersey containers.

• Upgraded to Jackson Guava 1.9.1, with support for Optional.

• Fixed error message in AssetBundle.

• Fixed WebApplicationException‘‘s being thrown by ‘‘JerseyClient.

3.3.12 v0.4.0: May 1 2012

• Switched logging from Log4j to Logback.

– Deprecated Log#fatal methods.

– Deprecated Log4j usage.

– Removed Log4j JSON support.

– Switched file logging to a time-based rotation system with optional GZIP and ZIP compression.

– Replaced logging.file.filenamePattern with logging.file.currentLogFilename
and logging.file.archivedLogFilenamePattern.

– Replaced logging.file.retainedFileCountwith logging.file.archivedFileCount.

76 Chapter 3. About Dropwizard

http://logging.apache.org/log4j/1.2/
http://logback.qos.ch/

Dropwizard Documentation, Release 0.7.0

– Moved request logging to use a Logback-backed, time-based rotation system with optional GZIP and ZIP
compression. http.requestLog now has console, file, and syslog sections.

• Fixed validation errors for logging configuration.

• Added ResourceTest#addProvider(Class<?>).

• Added ETag and Last-Modified support to AssetServlet.

• Fixed off logging levels conflicting with YAML’s helpfulness.

• Improved Optional support for some JDBC drivers.

• Added ResourceTest#getJson().

• Upgraded to Jackson 1.9.6.

• Improved syslog logging.

• Fixed template paths for views.

• Upgraded to Guava 12.0.

• Added support for deserializing CacheBuilderSpec instances from JSON/YAML.

• Switched AssetsBundle and servlet to using cache builder specs.

• Switched CachingAuthenticator to using cache builder specs.

• Malformed JSON request entities now produce a 400 Bad Request instead of a 500 Server Error
response.

• Added connectionTimeout, maxConnectionsPerRoute, and keepAlive to
HttpClientConfiguration.

• Added support for using Guava’s HostAndPort in configuration properties.

• Upgraded to tomcat-dbcp 7.0.27.

• Upgraded to JDBI 2.33.2.

• Upgraded to HttpClient 4.1.3.

• Upgraded to Metrics 2.1.2.

• Upgraded to Jetty 8.1.3.

• Added SSL support.

3.3.13 v0.3.1: Mar 15 2012

• Fixed debug logging levels for Log.

3.3.14 v0.3.0: Mar 13 2012

• Upgraded to JDBI 2.31.3.

• Upgraded to Jackson 1.9.5.

• Upgraded to Jetty 8.1.2. (Jetty 9 is now the experimental branch. Jetty 8 is just Jetty 7 with Servlet 3.0 support.)

• Dropped dropwizard-templates and added dropwizard-views instead.

• Added AbstractParam#getMediaType().

• Fixed potential encoding bug in parsing YAML files.

3.3. Release Notes 77

Dropwizard Documentation, Release 0.7.0

• Fixed a NullPointerException when getting logging levels via JMX.

• Dropped support for @BearerToken and added dropwizard-auth instead.

• Added @CacheControl for resource methods.

• Added AbstractService#getJson() for full Jackson customization.

• Fixed formatting of configuration file parsing errors.

• ThreadNameFilter is now added by default. The thread names Jetty worker threads are set to the method
and URI of the HTTP request they are currently processing.

• Added command-line overriding of configuration parameters via system properties. For example,
-Ddw.http.port=8090 will override the configuration file to set http.port to 8090.

• Removed ManagedCommand. It was rarely used and confusing.

• If http.adminPort is the same as http.port, the admin servlet will be hosted under /admin. This
allows Dropwizard applications to be deployed to environments like Heroku, which require applications to open
a single port.

• Added http.adminUsername and http.adminPassword to allow for Basic HTTP Authentication for
the admin servlet.

• Upgraded to Metrics 2.1.1.

3.3.15 v0.2.1: Feb 24 2012

• Added logging.console.timeZone and logging.file.timeZone to control the time zone of the
timestamps in the logs. Defaults to UTC.

• Upgraded to Jetty 7.6.1.

• Upgraded to Jersey 1.12.

• Upgraded to Guava 11.0.2.

• Upgraded to SnakeYAML 1.10.

• Upgraded to tomcat-dbcp 7.0.26.

• Upgraded to Metrics 2.0.3.

3.3.16 v0.2.0: Feb 15 2012

• Switched to using jackson-datatype-guava for JSON serialization/deserialization of Guava types.

• Use InstrumentedQueuedThreadPool from metrics-jetty.

• Upgraded to Jackson 1.9.4.

• Upgraded to Jetty 7.6.0 final.

• Upgraded to tomcat-dbcp 7.0.25.

• Improved fool-proofing for Service vs. ScalaService.

• Switched to using Jackson for configuration file parsing. SnakeYAML is used to parse YAML configuration
files to a JSON intermediary form, then Jackson is used to map that to your Configuration subclass and its
fields. Configuration files which don’t end in .yaml or .yml are treated as JSON.

• Rewrote Json to no longer be a singleton.

78 Chapter 3. About Dropwizard

http://metrics.codahale.com/about/release-notes/#v2-1-1-mar-13-2012

Dropwizard Documentation, Release 0.7.0

• Converted JsonHelpers in dropwizard-testing to use normalized JSON strings to compare JSON.

• Collapsed DatabaseConfiguration. It’s no longer a map of connection names to configuration objects.

• Changed Database to use the validation query in DatabaseConfiguration for its #ping() method.

• Changed many HttpConfiguration defaults to match Jetty’s defaults.

• Upgraded to JDBI 2.31.2.

• Fixed JAR locations in the CLI usage screens.

• Upgraded to Metrics 2.0.2.

• Added support for all servlet listener types.

• Added Log#setLevel(Level).

• Added Service#getJerseyContainer, which allows services to fully customize the Jersey container
instance.

• Added the http.contextParameters configuration parameter.

3.3.17 v0.1.3: Jan 19 2012

• Upgraded to Guava 11.0.1.

• Fixed logging in ServerCommand. For the last time.

• Switched to using the instrumented connectors from metrics-jetty. This allows for much lower-level
metrics about your service, including whether or not your thread pools are overloaded.

• Added FindBugs to the build process.

• Added ResourceTest to dropwizard-testing, which uses the Jersey Test Framework to provide full
testing of resources.

• Upgraded to Jetty 7.6.0.RC4.

• Decoupled URIs and resource paths in AssetServlet and AssetsBundle.

• Added rootPath to Configuration. It allows you to serve Jersey assets off a specific path (e.g.,
/resources/* vs /*).

• AssetServlet now looks for index.htm when handling requests for the root URI.

• Upgraded to Metrics 2.0.0-RC0.

3.3.18 v0.1.2: Jan 07 2012

• All Jersey resource methods annotated with @Timed, @Metered, or @ExceptionMetered are now instru-
mented via metrics-jersey.

• Now licensed under Apache License 2.0.

• Upgraded to Jetty 7.6.0.RC3.

• Upgraded to Metrics 2.0.0-BETA19.

• Fixed logging in ServerCommand.

• Made ServerCommand#run() non-final.

3.3. Release Notes 79

Dropwizard Documentation, Release 0.7.0

3.3.19 v0.1.1: Dec 28 2011

• Fixed ManagedCommand to provide access to the Environment, among other things.

• Made JerseyClient‘s thread pool managed.

• Improved ease of use for Duration and Size configuration parameters.

• Upgraded to Mockito 1.9.0.

• Upgraded to Jetty 7.6.0.RC2.

• Removed single-arg constructors for ConfiguredCommand.

• Added Log, a simple front-end for logging.

3.3.20 v0.1.0: Dec 21 2011

• Initial release

3.4 Documentation TODOs

80 Chapter 3. About Dropwizard

	Getting Started
	User Manual
	About Dropwizard

